
An introduction to Conscious Turing Machines with fizz

Jean-Louis Villecroze
jlv@f1zz.org @CocoaGeek

June 16, 2019 (Revision 2)

Abstract

In this article, we will detail the implementation of a simplified Conscious Turing Machine as proposed
by Manuel, Lenore and Avrim Blum. We will also build simple examples of such machines that will
consciously memorize numbers or list of numbers and compute the sum of a list of numbers.

Acknowledgement

The author would like to thanks Manuel and Lenore Blum, for their renewed support and patience during
the development of this work.

Prerequisite

A basic understanding of the concepts behind fizz (version 0.5 and up) is expected from the reader of this
article. It is suggested to read the introductory article Building a simple stock prices monitor with fizz 1 first
or at least read sections two to four of the user manual for an overview of the language and runtime. The
complete source code discussed in this article can be downloaded from the author’s web site2.

What is a Conscious Turing Machine?

A Conscious Turing Machine (CTM) is a cognitive architecture inspired by cognitive science, where con-
sciouness (experiencing qualia) is at the center of the architecture. While Professor Blum3 drew from previ-
ous works by many researchers, the Global Workspace Theory by Bernard Baars4 is a foundational inpiration.

At the core of the architecture is the concept that consciouness can be seen as a stage on which many actors
(also called processors) vy for attention via a special kind of weighted messages (called chunks) that get
propagated from the actors all the way to the stage. Because the stage has a very limited capacity, only the
chunks with the highest weights can be accepted at the same time on the stage. Once there, all chunks will be
broadcasted out to all the actors (also called audience) at a set pace. At no point in time the actors are said
to be conscious, even when they have one of their chunk on stage. Their activity is unconscious. Contrast-
ing to the limited nature of the conscious stage, the unconscious actors are numerous and highly parallelized.

The chunks that are broadcasted by the stage set the focus of the system. While many other unconscious
processes may be on-going at any time, processors are expected to paid careful attention to what is hap-
pening on the stage and react accordingly. The main advantage of this architecture, as resoned by Manuel
Blum, is to allow for a better handling of complex situations, even unanticipated ones. But, it would also
allow for a system to create the most likely interpretation of the world in which it operates, and continuously
re-evaluate that interpretation and adjust accordingly.

Since Professor Blum and his collaborators have not, at the time of this writing, published an article on
the subject, a short description of the main components of a CTM, as well as some key details on their
functioning, is needed as we will base our implementation on it. This was gleaned by the author from talks’
notes and email exchanges with Professor Blum:

• Chunk (the basic element that is send to/from the stage) contains:

– a GUID (that uniquely identify the chunk)

1http://f1zz.org/downloads/iex.pdf
2http://f1zz.org/downloads/ctm.tgz
3https://www.cs.cmu.edu/˜mblum/
4http://bernardbaars.pbworks.com/w/page/14637775/FrontPage

1

– a label (which identify the type/source of the chunk)

– a payload (e.g. a number, symbol ...)

– a weight (a floating point value)

• Stage (conscious)

– Limited in capacity (7±2 chunks)

– Only accept chunks above a certain threshold (which value can change dynamically)

– Some chunk can kick every other chunk of the stage (e.g. pain)

– Regularly broadcasts to the audience the chunks with the biggest weights

– Is not a ”central executive” (there may be central executive processors, but their access to the
stage is handled like any other processors)

– Has no processing/inferring abilities

– Chunk’s weight decays over time when the chunk is on stage

– Very dynamic

• Actor (unconscious)

– See the stage’s chunk broadcasts (and react to them if possible/needed)

– Highly specialized

– Highly connected to other actors (query/reply)

∗ connection between actors can be non-direct (via the stage) when the actors don’t know about
each others yet (once an actor answers to another one via chunk, it may gets a link to the
the answering actor)

∗ linking enable conscious processing to go unconscious

– Attempt to go conscious by the weight of the chunk it pushes up

∗ weight grows as a function of importance and length of time it has been put off

∗ what get to the stage may get integrated between many actors that are associated. In that
case the chunk with the highest magnitude is the one getting pushed-up, with the weight as
the sum of the weights.

– An actor’s weight:

∗ grows over time while it is on stage

∗ decays over time while there’s no interaction with other actors

∗ changes when the actor provides good/bad answers

For a better (and deeper) introduction to the Conscious Turing Machine, it is recommended to watch one
of the numerous talks that Professor Blum have given over the past few years5.

The stage, chunks and actors

As discussed in the previous section, a CTM is composed of a stage and a (potentially) large set of actors,
with special messages being exchanged between the stage and the actors. To implement this in fizz , we are
going to use a series of elementals which will work together to implement the stage and similarly use as many
elementals as necessary to implement any actors.

Chunks will be represented as list of four terms, which will be wrapped into statements. We are going to
use the statement’s label to allow for a more efficient filtering of the chunks during runtime. We will also
use special labels to indicate events such as the first time a chunk is accepted on stage as well as when it is
dropped from the stage. Note that it isn’t something that is specified in the Blum’s CTM, but it is practical.

5for example https://www.youtube.com/watch?v=AXKI2f1AxtM from October 2018

2

ctm.chunk.c conscious chunk (stage to actors)
ctm.chunk.u unconscious chunk (actor to stage)
ctm.chunk.d chunk drops from the stage
ctm.chunk.j chunk joins into the stage

The expected terms in each of these chunks will be: two symbols (a unique identifier and a label), a term
and a number, the weight of the chunk.

To make it easier for an actor to be aware of all chunks on stage at once, we will also broadcast the chunks
as a (weight) sorted list and as a frame in which the chunks will be grouped by their label:

ctm.chunk.c.l list of all conscious chunks (stage to actors),
sorted by increasing weights

ctm.chunk.c.f frame of all conscious chunks (stage to actors)

At regular intervals, the stage will go over all the chunks it has accepted (in respect to its limited capacity)
and broadcast them out. Any actor that cares for specific chunks is then able to react to them. This is
something which we will be using to monitor the activity of the CTM as any elementals can listen to any
statements.

Let’s get started now by setting up the ability to broadcast out (to all actors) at a regular time interval.
To do that, we create a new fizz file called ticks.fizz and specify in it an instance of the elemental class
FZZCTicker which we will call ctm.tick.fast:

1 ctm.tick.fast {

2 class = FZZCTicker,

3 tick = $tick.fast,

4 tick.on.attach = yes

5 } {}

The tick property specifies the frequenty (in seconds) at which the elemental will declare a statement. When
a statement in fizz is declared, it is broadcasted out to all elementals that cares (by having a matching trigger
predicate) in the substrate. Thus, we can use such statement to trigger periodic inferrings.

Since not everything that will be running in a CTM is necessary bound to the same frequency, we are going
to add two more tickers:

1 ctm.tick.dull {

2 class = FZZCTicker,

3 tick = $tick.dull,

4 tick.on.attach = yes

5 } {}

6
7 ctm.tick.slow {

8 class = FZZCTicker,

9 tick = $tick.slow,

10 tick.on.attach = yes

11 } {}

To set the tick property of the tickers, we have used constants ($tick.slow, $tick.dull and $tick.fast).
This allow us to treat them as parameters that can easily be changed when an experiment is started. To do
that, and make things easier, we are going to use a solution file which on top of providing a value for the
constants will also specify all the fizz files we wish to load.

Create a new JSON file called stage.json and copy into it the following:

3

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["ticks.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.dull",

8 "value" : 3

9 },

10 {

11 "label" : "tick.slow",

12 "value" : 1

13 },

14 {

15 "label" : "tick.fast",

16 "value" : 0.5

17 }

18]

19 }

20 }

The file indicates that ticks.fizz should be loaded and that three constants should be registered by the
runtime, with value going from 0.5 to 3 seconds. We will use the ctm.tick.fast ticker for the stage broad-
casts. A more realistic6 value here than 0.5 would be 0.25 but having a slower pace make testing and
developing a bit easier, so we will keep it at that value for now.

Let’s give what we have so far a try, using the console command spy to verify that indeed the elemental
ctm.tick.slow is declaring a statement every seconds. Note that instead of loading a fizz file, we are given
as command line argument the JSON file we just created. As long as the file conforms to what is expected,
fizz will interprete it:

$./fizz.x64 ./etc/experiments/ctm/stage.json
fizz 0.5.D-X (20181108.1239) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/stage.json ...
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading completed in 0.004s
?- /spy(append,ctm.tick.slow)
spy : observing ctm.tick.slow
spy : S ctm.tick.slow(9, 1541794413.795849) (90.000000)
spy : S ctm.tick.slow(10, 1541794414.796397) (90.000000)
spy : S ctm.tick.slow(11, 1541794415.796729) (90.000000)
spy : S ctm.tick.slow(12, 1541794416.796212) (90.000000)
spy : S ctm.tick.slow(13, 1541794417.796727) (90.000000)
spy : S ctm.tick.slow(14, 1541794418.796333) (90.000000)

Without a way to see what’s happening when a CTM is running, it is going to be difficult to test, debug
or verify that it is working as expected. To help with that we are now going to setup an elemental which
sole purpose will be to output to the console any chunks that get declared. Create a new fizz file called
debug.fizz in which we will be creating a prototype (a.k.a. a rule) with a trigger predicate for each of the
chunk’s label we defined earlier:

1 ctm.chunk.observer {

2
3 () :- @ctm.chunk.c.l(:l?[neq([])]),

4 console.puts("ctm.obs: ",ctm.chunk.c.l(:l)),

5 hush;

6
7 () :- @ctm.chunk.c.f(:f), frm.length(:f,_?[gt(0)]),

8 console.puts("ctm.obs: ",ctm.chunk.c.f(:f)),

9 hush;

10
11 () :- @ctm.chunk.c(:g,:s,:d,:w),

6https://www.princeton.edu/news/2018/08/22/spotlight-attention-more-strobe-say-researchers

4

12 console.puts("ctm.obs: ",ctm.chunk.c(:g,:s,:d,:w)),

13 hush;

14
15 () :- @ctm.chunk.u(:g,:s,:d,:w),

16 console.puts("ctm.obs: ",ctm.chunk.u(:g,:s,:d,:w)),

17 hush;

18
19 () :- @ctm.chunk.d(:g,:s,:d,:w),

20 console.puts("ctm.obs: ",ctm.chunk.d(:g,:s,:d,:w)),

21 hush;

22
23 () :- @ctm.chunk.j(:g,:s,:d,:w),

24 console.puts("ctm.obs: ",ctm.chunk.j(:g,:s,:d,:w)),

25 hush;

26
27 () :- @ctm.chunk.r(:g,:s,:d,:w),

28 console.puts("ctm.obs: ",ctm.chunk.r(:g,:s,:d,:w)),

29 hush;

30
31 }

When, for example, a chunk is sent by an actor (using ctm.chunk.u) we will unify four variables to its
terms and print them in the console. Note that call to the hush primitive which end each of the prototype
isn’t necessary for this to work, but is present here as a minor performance optimization as it prevent the
elemental from itself declaring a statement on successful resolution of any prototype. We will be using this
throughout this article.

Once we add the file debug.fizz to the solution file stage.json, we can test ctm.chunk.observer as follow:

$./fizz.x64 ./etc/experiments/ctm/stage.json
fizz 0.5.D-X (20181108.1239) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/stage.json ...
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loaded ./etc/experiments/ctm/debug.fizz in 0.009s
load : loading completed in 0.011s
?- declare(ctm.chunk.u(%sym.4,hello,[1,2,3,4],1))
-> () := 1.00 (0.001) 1
ctm.obs: ctm.chunk.u(vbwh, hello, [1, 2, 3, 4], 1)

Here, we have used the declare primitive to broadcast into the substrate a statement build from the
ctm.chunk.u functor (with an arity of 4) that is passed as term to the primitive. Note that %sym.4 is
a volatile which get substitued by a random symbol with a length of four characters. We will use that
intensively in this article to generate GUID since we will not be building anything where a large number
of chunks may lead to GUID collisions. For a real-world scenario, it will be preferable to use %sym.10 or %sym.

Let’s now look at implementing the stage it-self. We will put all elemental definitions in a single fizz file
called stage.fizz which we will need to add to the list of files to be loaded in stage.json. If you recall the
CTM description from earlier, the role of the stage is to see all incoming chunks and having kept only the
ones with the highest weight values (since the conscious capacity is limited by the Magical Number Seven,
Plus or Minus Two7), broadcasts them all out to whomever cares. There, is one of the difference between
the CTM devised by The Blums and this experimental implementation as they only see the broadcasting
to include a single chunk, the one with the highest weight, and we broadcast out every single chunks on stage.

The last thing we need the stage to do is to lower the weight of the chunks over time so that they gets
removed once the value drops below a given threshold (that is unless the chunk get replaced by a newer
version of it-self with a higher weight value).

7https://en.wikipedia.org/wiki/The Magical Number Seven, Plus or Minus Two

5

Since any chunks may arrive at anytime, while we are only broadcasting the chunks on stage every so often,
we are going to store them temporary in a frame using the chunk’s GUID as the key. This will allow us to
always keep the most recent version of a given chunk if multiple versions of it are sent in shorter succession
than the time in between stage’s broadcast.

So, to get the main elemental for the stage started, we will define its properties as follow:

1 ctm.stage {

2
3 chunks = {},

4 c.list = {},

5 c.size = $stage.size,

6 c.loss = $stage.loss,

7 c.drop = $stage.drop

8
9 } {}

The chunks property will be a frame containing all the chunks that are currently on the stage and c.list,
a frame, will hold the recently received chunks temporary until the elemental get to a broadcasting cycle.
With the following three properties, we respectively indicates the maximum number of chunks accepted on
stage, the weight loss to be applied to each chunk and lastly the threshold weight under which a chunk will
get removed from the stage.

As we did for the tickers’ tick we defined earlier, we are using constants to set these three last properties.
So we need to edit the stage.json file and add them:

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["ticks.fizz", "debug.fizz", "stage.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.dull",

8 "value" : 3

9 },

10 {

11 "label" : "tick.slow",

12 "value" : 1

13 },

14 {

15 "label" : "tick.fast",

16 "value" : 0.5

17 },

18 {

19 "label" : "stage.size",

20 "value" : 7

21 },

22 {

23 "label" : "stage.loss",

24 "value" : 0.1

25 },

26 {

27 "label" : "stage.drop",

28 "value" : -2

29 }

30]

31 }

32 }

With the stage properties now in place, we can now add to the elemental the prototypes that will be triggered
when we get a tick and when we get any unconscious chunks:

1 ctm.stage {

2
3 chunks = {},

6

4 c.list = {},

5 c.size = $stage.size,

6 c.loss = $stage.loss,

7 c.drop = $stage.drop

8
9 } {

10
11 // broadcast all the chunks on the stage (after purging them)

12 () :- @ctm.tick.slow(_,:t),

13 peek(c.list,:c.wait),

14 poke(c.list,{}),

15 frm.values(:c.wait,:c.list), frm.values($chunks,:chunks),

16 #ctm.stage.chunks.update(:chunks,$c.loss,$c.drop,:f),

17 #ctm.stage.chunks.inject(:c.list,:t,:f,:f.r),

18 #ctm.stage.chunks.resize(:f.r,:t,$c.size,:v.o),

19 #ctm.stage.list.to.chunks(:v.o,{},:f.o),

20 #ctm.stage.list.to.public(:v.o,:v),

21 poke(chunks,:f.o),

22 #ctm.stage.chunks.broadcast(:v.o,:t),

23 #ctm.stage.list.to.frame(:v.o,{},:f.c),

24 declare(ctm.chunk.c.l(:v)),

25 declare(ctm.chunk.c.f(:f.c)),

26 hush;

27
28 // handle chunk.u, we append it to a temporary storage

29 () :- @ctm.chunk.u(:g?[is.bound],:s?[is.bound],:d?[is.bound],:w?[is.bound]),

30 frm.store($c.list,:g,[:g,:s,:d,:w],:f.o),

31 poke(c.list,:f.o),

32 hush;

33
34 }

The prototype on line 29, starts by specifying a trigger predicate for the chunks sent to the stage. For sanity
sake, it checks that the four terms are bound (that is no unbound variables) before unifying their values
to four local variables. When that is satisfied, the prototype will store a list that contains all four terms in
the property c.list using the chunk’s GUID as the key. As in fizz all terms as immutable, the primitive
frm.store which we use here, will unify it’s last term with the new frame that results from storing a new
value in the frame. The prototype ends by using the poke primitive to write the new frame (bound to the
variable f.o) in the elemental property c.list.

The first prototype which starts on line 12, get executed for each statements generated by one of the tickers
(we use wildcard variables for the unification of its first term as we will only care about the second one,
the timestamp). It starts by reading the frame stored in the property c.list and right away replace it
(in the elemental’s properties) by an empty frame. This is done by using the primitives peek and poke.
The next step taken by the prototype is to extract all the chunks stored in the frame with the primitive
frm.values. This will unify the variable :c.list with a list of all the chunks received since the last tick.
The inferring continues with predicates calling on five different secondary elementals. It updates the weight
(substract from each the amount taken from the property c.loss) of all the chunks currently on stage (using
ctm.stage.chunks.update) as well as drop any chunk which weight is below a given threshold (given by the
property c.drop). We then insert into the frame that contains all the updated chunks the new ones (with
ctm.stage.chunks.inject). The second term of that predicate is the timestamp from the ticker. We use
it to keep track of when a chunk was first added to the stage. The elemental ctm.stage.chunks.resize is
used to insure that the frame won’t have more items than the stage can accept (using the property c.size).
The variable v.o will be unified with a list that contains all the chunks accepted on stage. We will then
relies on ctm.stage.list.to.chunks to convert the list into a frame then use ctm.stage.list.to.public
to convert the same list into a list where the timestamp has been removed from all chunks. Finally we use
the primitive poke to write the frame back into the elemental’s properties.

The line 22 to 25 completes the handling of the ticker’s tick by broadcasting out to the actors all the chunks
on stage (using ctm.stage.chunks.broadcast), then we convert the list in a frame were all the chunks are
grouped by labels (ctm.stage.list.to.frame) and finally declare both the list and the frame.

Let’s now look at the first secondary elemental which we used in ctm.stage:

7

1 ctm.stage.chunks.update {

2
3 ([],_,_,{})^ :- true;

4
5 ([[:g,:s,:d,:w,:t]],:loss,:drop,:f.o) :- sub(:w,:loss,:w2), gt(:w2,:drop)^,

6 frm.store({},:g,[:g,:s,:d,:w2,:t],:f.o);

7 ([[:g,:s,:d,:w,:t]],:loss,:drop,{}) :- sub(:w,:loss,:w2), lte(:w2,:drop)^,

8 #ctm.stage.callback(d,[:g,:s,:d,:w2]);

9 ([[:g,:s,:d,:w,:t]|:r],:loss,:drop,:f.o) :- sub(:w,:loss,:w2), gt(:w2,:drop)^,

10 frm.store({},:g,[:g,:s,:d,:w2,:t],:f.i2),

11 ~self(:r,:loss,:drop,:f.m),

12 frm.cat(:f.i2,:f.m,:f.o);

13 ([[:g,:s,:d,:w,:t]|:r],:loss,:drop,:f.o) :- sub(:w,:loss,:w2), lte(:w2,:drop)^,

14 #ctm.stage.callback(d,[:g,:s,:d,:w2]),

15 ~self(:r,:loss,:drop,:f.o);

16
17 }

The elemental contains five prototypes whose entrypoints matchs the followings: the list of chunks to update,
the weight loss and weight drop values. The last term will be the frame which will contains the updated
chunks (except all the ones that were removed). Since the elemental will be traversing a list, its procedural
knowledge follow a classic recursive pattern, where a prototype deals with an empty list (line 3), one deals
with a list with a single item in it (line 5 and 7), and finaly one prototype deals with a list of two or more
items (line 9 and 13). The gotcha here is that since not all the chunks on the list are going to be included
in the result list, each of the prototypes that deals with a chunk need to be duplicated: one for when the
reduced weight is above the drop value and one for when the weight is below the threshold. When the chunk
isn’t added to the frame, we will call ctm.stage.callback to broadcast the fact that a chunk was dropped
from the stage.

Let’s briefly unpack some of the procedural knowledge we just wrote. The caret character is used in fizz
to indicate that backtracking and concurrent inferring must be disabled once the predicate to its left has
succeeded. When it is used with a prototype’s entrypoint, no other prototype from the elemental will be
considered when the entrypoint unifies with a query’s predicate. The last two prototypes recursively call
the elemental using the ~self syntax. Using the self keyword not only make writing recursive predicates
simpler, it also allow for an elemental to be cloned and have the predicate points to the right elemental.

The next secondary elemental we are going to look at is ctm.stage.chunks.inject. As we have briefly
stated earlier, its purpose is to insert all the chunks we have received (stored in a list) into a frame containing
all the chunks still on the stage. This is done in a way that is similar to the previous elemental we looked at.
Since we are using a frame (with the chunk’s GUID) as the label, replacing a given chunk by a new instance
of it would be easy if it wasn’t for the fact that we are also storing the timestamp at which a chunk got into
the stage. When we are replacing it, we want the timestamp to be conserved:

1 ctm.stage.chunks.inject {

2
3 ([],_,:f.i,:f.i)^ :- true;

4
5 ([[:g,:s,:d,:w]],:t,:f.i,:f.o) :- frm.fetch(:f.i,:g,[_,_,_,_,:t0])^, frm.store(:f.i,:g,[:g,:s,:d,:w,:t0],:f.o);

6 ([[:g,:s,:d,:w]],:t,:f.i,:f.o) :- !frm.fetch(:f.i,:g,[_,_,_,_,:t0])^, frm.store(:f.i,:g,[:g,:s,:d,:w,:t],:f.o);

7
8 ([[:g,:s,:d,:w]|:r],:t,:f.i,:f.o) :- frm.fetch(:f.i,:g,[_,_,_,_,:t0])^, frm.store(:f.i,:g,[:g,:s,:d,:w,:t0],:f.i2),

9 ~self(:r,:t,:f.i2,:f.o);

10 ([[:g,:s,:d,:w]|:r],:t,:f.i,:f.o) :- !frm.fetch(:f.i,:g,[_,_,_,_,:t0])^, frm.store(:f.i,:g,[:g,:s,:d,:w,:t],:f.i2),

11 ~self(:r,:t,:f.i2,:f.o);

12
13 }

On line 3, we defined a prototype for dealing with an empty list. It is in fizz necessary to have such statement
in our case as otherwise, when the stage is getting re-evaluated with no new chunks to be considered, none of
the prototypes in the elemental will be used. This will lead to the predicate in ctm.stage to not be answered
since no other elemental can handle this predicate. Eventually, the query from ctm.stage will get discarded.

8

Line 5 and 6 deals with adding a single (or the last) chunk; We either succeeded fetching the chunk using its
GUID when the chunk already exists (using the primitive frm.fetch) so that we can keep the timestamp
(which value will be bound to the variable t0) and use it for the new list that will contains the chunk stored
in a new frame. If frm.fetch fails (on line 6), the negation indicator (!) will allow the inferring to continue
so that we store the new chunk using the timestamp bound to the variable t. Line 8 and 10 shows the same
pattern, but also deals with traversing the list by recursively calling the elemental on the rest (bound to the
variable r) of the list except the head (the first element).

The secondary elemental that follows is ctm.stage.chunks.resize, which takes the frame containing the
updated and the new chunks and insure that we respect the stage capacity, by removing as many (lowest
weight first) chunks as needed:

1 ctm.stage.chunks.resize {

2
3 (:f.i,:t,:n,:v.s) :- frm.length(:f.i,:l), lte(:l,:n)^,

4 frm.values(:f.i,:v.i), lst.sort(:v.i,:v.s,3);

5 (:f.i,:t,:n,:v.o) :- frm.length(:f.i,:l), frm.values(:f.i,:v.i),

6 lst.sort(:v.i,:v.s,3), sub(:l,:n,:d),

7 lst.tails(:v.s,:n,:v.o), lst.heads(:v.s,:d,:v.d),

8 #ctm.stage.chunks.broadcast.drops(:v.d,:t);

9
10 }

In fizz , as you may have guessed, the order in which the prototypes are defined matters when they are
considered for answering a query. The first prototype on line 3, uses the primitive frm.length to get the
number of chunks in the frame and compares that to the stage capacity that is given as the third term of the
predicate that unifies with the prototype’s entrypoint (variable n). If the number of chunks is less or equal to
the capacity, the inferring will continue by getting a list of all the chunks in the frame (using frm.values)
then sorting the list using the primitive lst.sort. The third term in the lst.sort predicate is the index of
the term in each of the sub-list contained in the list as the value to sort on (increased order). Since we have
used the cut indicator to the right of the lte predicate, none of the other prototypes will be considered. Thus,
the prototype on line 5, doesn’t need to check that the number of items in the input frame is larger than the
stage capacity. Just as the previous prototype, the inferring get the list of chunks and sort it before splitting
the list into two parts, the one that will be keept (bound to the variable v.o) and the one that will be dropped
(bound to v.d). The inferring then finish by calling the elemental ctm.stage.chunks.broadcast.drops to
broadcast all the chunks that have been dropped from the stage.

Now that ctm.stage has the list of the chunks on stage when it gets the reply to the ctm.stage.chunks.resize
predicate, it queries ctm.stage.list.to.chunks to transform the list into a frame:

1 ctm.stage.list.to.chunks {

2
3 ([],:f,:f)^ :- true;

4 ([[:g,:s,:d,:w,:t]],:f.i,:f.o)^ :- frm.store(:f.i,:g,[:g,:s,:d,:w,:t],:f.o);

5 ([[:g,:s,:d,:w,:t]|:r],:f.i,:f.o) :- frm.store(:f.i,:g,[:g,:s,:d,:w,:t],:f.r), ~self(:r,:f.r,:f.o);

6
7 }

Here again, the pattern used for the procedural knowledge is the same as we are traversing a list to recursively
build a frame. That same pattern is again used for the secondary elemental used by ctm.stage to convert
the internal list of chunks into one that we can send out to any actors interested about the content of the
stage as a whole:

1 ctm.stage.list.to.public {

2
3 ([],[])^ :- true;

4 ([[:g,:s,:d,:w,_]],[[:g,:s,:d,:w]])^ :- true;

5 ([[:g,:s,:d,:w,_]|:r],[[:g,:s,:d,:w]|:r2]) :- ~self(:r,:r2);

9

6
7 }

This is however, a simpler procedural knowledge which rebuild the list as given in the first term of the predicate
minus the fifth element of the list representing a chunk. Once the query from ctm.stage is answered by the
elemental, the inferring resumes, moving to broadcasting the content of the stage to the actors. This is done
by the elemental ctm.stage.chunks.broadcast which is defined as:

1 ctm.stage.chunks.broadcast {

2
3 ([],_)^ :- true;

4 ([[:g,:s,:d,:w,:t]],:t)^ :- #ctm.stage.callback(j,[:g,:s,:d,:w]);

5 ([[:g,:s,:d,:w,_]],_)^ :- #ctm.stage.callback(c,[:g,:s,:d,:w]);

6 ([[:g,:s,:d,:w,:t]|:r],:t)^ :- #ctm.stage.callback(j,[:g,:s,:d,:w]), ~self(:r,:t);

7 ([[:g,:s,:d,:w,_]|:r],:t)^ :- #ctm.stage.callback(c,[:g,:s,:d,:w]), ~self(:r,:t);

8
9 }

The elemental expects the first term to any predicate targeting the elemental to be the public list of chunks
we just computed above, and the timestamp of the current stage evaluation. This value is used to decide
which of the broadcasting labels to use for any given chunk. When the timestamp value matches the one in
the chunk, we want the stage to broadcast the chunk as ctm.chunk.j, indicating that the chunk is new to
the stage. When the timestamps don’t match, it is then ctm.chunk.c that should be used.

The last secondary elemental directly used by ctm.stage is ctm.stage.list.to.frame. It takes the list of
chunks and create a frame from it where all chunks with the same label are grouped together:

1 ctm.stage.list.to.frame {

2
3 ([],:f,:f)^ :- true;

4 ([[:g,:s,:d,:w,_]],:f.i,:f.o) :- !frm.label(:f.i,:s)^, frm.store(:f.i,:s,[[:g,:d,:w]],:f.o);

5 ([[:g,:s,:d,:w,_]],:f.i,:f.o) :- frm.label(:f.i,:s)^, frm.fetch(:f.i,:s,:l),

6 frm.store(:f.i,:s,[[:g,:d,:w]|:l],:f.o);

7 ([[:g,:s,:d,:w,_]|:r],:f.i,:f.o) :- ~self(:r,:f.i,:f.r), !frm.label(:f.r,:s)^, frm.store(:f.r,:s,[[:g,:d,:w]],:f.o);

8 ([[:g,:s,:d,:w,_]|:r],:f.i,:f.o) :- ~self(:r,:f.i,:f.r), frm.label(:f.r,:s)^, frm.fetch(:f.r,:s,:l),

9 frm.store(:f.r,:s,[[:g,:d,:w]|:l],:f.o);

10 }

The way this procedural knowledge works here is similar to ctm.stage.chunks.inject: Line 4 and 5 deals
with the last (or only) chunk in the list. Line 4 creates the pair in the frame for the label of the chunk
while line 5, add to an existing pair in the frame. Line 7 and 8 do the same thing, with the added need to
recursively work on the rest of the list.

We now need to quickly look at the two support elementals we have used, but not yet defined:
ctm.stage.chunks.broadcast.drops and ctm.stage.callback. The first one, as you may recall, is called
upon by ctm.stage.chunks.resize to inform the actors of any chunk that have been dropped from the
stage as having the lowest weight in conditions where the stage is above capacity. Its procedural knowledge
is defined as:

1 ctm.stage.chunks.broadcast.drops {

2
3 ([],_)^ :- true;

4 ([[:g,:s,:d,:w,:t]],_?[neq(:t)])^ :- #ctm.stage.callback(d,[:g,:s,:d,:w]);

5 ([[:g,:s,:d,:w,:t]],:t)^ :- true;

6 ([[:g,:s,:d,:w,:t]|:r],:t)^ :- ~self(:r,:t);

7 ([[:g,:s,:d,:w,_]|:r],:t) :- #ctm.stage.callback(d,[:g,:s,:d,:w]), ~self(:r,:t);

8
9 }

10

The second term expected from a predicate querying this elemental is the timestamp. We use it to differen-
tiate between the chunks that have just been added to the stage and thoses that have been on stage for at
least one tick. When such chunk is to be dropped, we simply won’t broadcast that as the initial broadcast
upon joining the stage hasn’t been send. Line 4 makes use of a constrained wildcard as its second term to
insure that any predicate unifying with the entrypoint and thus executing a call to ctm.stage.callback

will be for a chunk that was not just added to the stage.

Let’s now continue and look at ctm.stage.callback:

1 ctm.stage.callback {

2
3 (d,[:g,:s,:d,:w]) :- declare(ctm.chunk.d(:g,:s,:d,:w));

4 (j,[:g,:s,:d,:w]) :- declare(ctm.chunk.j(:g,:s,:d,:w));

5 (c,[:g,:s,:d,:w]) :- declare(ctm.chunk.c(:g,:s,:d,:w));

6
7 }

It contains three prototypes, one for each of the supported broadcasts and make use of the primitive declare
to broadcast out a statement for a chunk. The necessity of this elemental can be questioned since it only
calls upon a single primitive in a straightforward fashion. We are, however, calling it from many different
places, so if we were to change or add to the way a chunk is broadcasted to the actors, having the possiblity
of changing it in a single location is advantageous.

We now have a complete set of elementals that implement the basic working of the stage. Before moving
on to complexe examples of CTM in action, let’s test that the stage is working as we would expect with a
couple of simple examples.

The first example is going to use keypress events as chunks being sent by an actor directly to the stage. To
start, create a JSON file called key.json with the following content in it:

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["stage.fizz", "debug.fizz", "ticks.fizz", "key.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.dull",

8 "value" : 3

9 },

10 {

11 "label" : "tick.slow",

12 "value" : 1

13 },

14 {

15 "label" : "tick.fast",

16 "value" : 0.5

17 },

18 {

19 "label" : "stage.size",

20 "value" : 7

21 },

22 {

23 "label" : "stage.loss",

24 "value" : 0.1

25 },

26 {

27 "label" : "stage.drop",

28 "value" : -0.1

29 }

30]

31 }

32 }

It is basically an adaptation to the JSON file we setup earlier (stage.json), adding a new fizz file called

11

key.fizz to the list of the file to be loaded. In that new fizz file we are going to create our first actor, which
when the user presses a key on the keyboard will attempt to push a chunk based on that event onto the
stage. Here’s the definition of that actor, which we will call ctm.actor.keypress:

1 ctm.actor.keypress {

2
3 weight.value = 1,

4 weight.range = <0.2|1>,

5 weight.loss = 0.1,

6 started = no

7
8 } {

9
10 // send a chunk for every keypress we get

11 () :- @console.keypress(:k),

12 ~self(uid,:g),

13 declare(ctm.chunk.u(:g,keypress,:k,$weight.value)),

14 poke(started,yes),

15 hush;

16
17 // lower the weight as time flow

18 () :- @ctm.tick.fast(_,_),

19 peek(started,yes),

20 sub($weight.value,$weight.loss,:w.o),

21 rng.clamp($weight.range,:w.o,:w.c),

22 poke(weight.value,:w.c),

23 hush;

24
25 // each time the keypress chunk is on stage we increase the weight

26 () :- @ctm.chunk.c(_,keypress,_,_),

27 add($weight.value,$weight.loss,:w.o),

28 rng.clamp($weight.range,:w.o,:w.c),

29 poke(weight.value,:w.c),

30 hush;

31
32 // get randomly assigned uid or create one if needed

33 (uid,:u) :- peek(uid,:u)^;

34 (uid,:u) :- set(:u,%sym.4), poke(uid,:u);

35
36 }

The procedural knowledge it contained is composed of three prototypes each called into inferring by a trigger
predicate. The first one, on line 11, gets going when the user press a key on the keyboard (which cause a
console.keypress statement to be broadcasted in the substrate) and after calling the elemental itself to
get a GUID (assigned the very first time a key is pressed, see line 33 and 34), uses the declare primitive
to send a chunk to the stage. The inferring then end by setting the value of the started property of the
elemental to yes. This property is queried by the second prototype (on line 19) to prevent the weight of the
chunks emitted by the actor from getting reduced at each tick before the user have started interacting with
the actor. After the first chunk is emitted by the actor, the weight of the next chunk will over time decrease
by substracting from the property weight.value the value in weight.loss (using the primitive sub). The
prototype also clamps weight.value using the range indicated in its property weight.range. The third
prototype on line 26 get triggered when one of the chunk on stage (the predicate’s label is ctm.chunk.c) is
the chunk. When this occurs, the inferring will increase the weight of the next chunk in a way that mirror
what we did in the second prototype.

Let’s now try this. Note, though, that the actor always send the same chunk to the stage as the GUID used
for it is always the same, even if the actual keycode changes:

$./fizz.x64 ./etc/experiments/ctm/key.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/key.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.008s
load : loading ./etc/experiments/ctm/ticks.fizz ...

12

load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/key.fizz ...
load : loaded ./etc/experiments/ctm/key.fizz in 0.005s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.037s
load : loading completed in 0.040s
ctm.obs: ctm.chunk.u(wpya, keypress, 113, 1)
ctm.obs: ctm.chunk.j(wpya, keypress, 113, 1)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.900000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.800000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.700000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.600000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.500000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.400000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.300000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.200000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0.100000)
ctm.obs: ctm.chunk.c(wpya, keypress, 113, 0)
ctm.obs: ctm.chunk.d(wpya, keypress, 113, -0.100000)

Once the loading of the JSON file is completed, the stage is up and running. We then pressed once the Q

key which caused the statement ctm.chunk.u(wpya, keypress, 113, 1) to be declared and picked-up by
the stage for inclusion on the stage. As expected, a ctm.chunk.j statement is declared and then followed
every half-seconds by ctm.chunk.c statements with a decreasing weight. Eventually, the weight of the chunk
which haven’t been declared again by the actor drops to the threshold and gets removed from the stage
causing a ctm.chunk.d statement to be declared.

Let see how the system handles the user pressing different keys:

ctm.obs: ctm.chunk.u(pydq, keypress, 113, 1)
ctm.obs: ctm.chunk.j(pydq, keypress, 113, 1)
ctm.obs: ctm.chunk.c(pydq, keypress, 113, 0.900000)
ctm.obs: ctm.chunk.u(pydq, keypress, 119, 0.800000)
ctm.obs: ctm.chunk.c(pydq, keypress, 119, 0.800000)
ctm.obs: ctm.chunk.u(pydq, keypress, 101, 0.600000)
ctm.obs: ctm.chunk.c(pydq, keypress, 101, 0.600000)
ctm.obs: ctm.chunk.c(pydq, keypress, 101, 0.500000)
ctm.obs: ctm.chunk.u(pydq, keypress, 116, 0.400000)
ctm.obs: ctm.chunk.c(pydq, keypress, 116, 0.400000)
ctm.obs: ctm.chunk.c(pydq, keypress, 116, 0.300000)
ctm.obs: ctm.chunk.c(pydq, keypress, 116, 0.200000)
ctm.obs: ctm.chunk.c(pydq, keypress, 116, 0.100000)
ctm.obs: ctm.chunk.c(pydq, keypress, 116, 0)
ctm.obs: ctm.chunk.d(pydq, keypress, 116, -0.100000)

We can see that the stage replaced the chunk that was on stage by the newer version, using the weight that
was set in the ctm.chunk.u statement. As some time passed before the two keypresses, the weight used for
the statement by the actor isn’t 1. Further keypresses shows the same effect.

By commenting the right prototype in debug.fizz and uncommenting the one using ctm.chunk.c.l as
trigger predicate, we can observe the full content of the stage in a single debug output:

ctm.obs: ctm.chunk.u(wqoc, keypress, 97, 1)
ctm.obs: ctm.chunk.j(wqoc, keypress, 97, 1)
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 97, 1]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 97, 0.900000]])
ctm.obs: ctm.chunk.u(wqoc, keypress, 122, 0.600000)
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 122, 0.600000]])
ctm.obs: ctm.chunk.u(wqoc, keypress, 120, 0.500000)
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0.500000]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0.400000]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0.300000]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0.200000]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0.100000]])
ctm.obs: ctm.chunk.c.l([[wqoc, keypress, 120, 0]])
ctm.obs: ctm.chunk.d(wqoc, keypress, 120, -0.100000)

To conclude this section, let’s look at an evolution of the above example, where each keypress is a different
chunk. As such, keypress events will fight for inclusion on the stage as their numbers mount. To start, make

13

a copy of the key.json file we created, renaming it keys.json and replace in it key.fizz by keys.fizz.
After that, create a new fizz file called keys.fizz then copy paste into it the following elemental definition:

1 ctm.actor.keypress {

2
3 weight.value = 1,

4 weight.range = <0.2|1>,

5 weight.loss = 0.1,

6 started = no

7
8 } {

9
10 // send a chunk for every keypress we get

11 () :- @console.keypress(:k),

12 declare(ctm.chunk.u(%sym.4,keypress,:k,$weight.value)),

13 poke(started,yes),

14 hush;

15
16 // lower the weight as time flow

17 () :- @ctm.tick.fast(_,_),

18 peek(started,yes),

19 sub($weight.value,$weight.loss,:w.o),

20 rng.clamp($weight.range,:w.o,:w.c),

21 poke(weight.value,:w.c),

22 hush;

23
24 // each time any keypress chunk is on stage we increase the weight

25 () :- @ctm.chunk.c(_,keypress,_,_),

26 add($weight.value,$weight.loss,:w.o),

27 rng.clamp($weight.range,:w.o,:w.c),

28 poke(weight.value,:w.c),

29 hush;

30
31 }

The only difference from this version of the actor we created earlier is that we no longer used the same GUID
for each of the chunk it will emit but instead use the volatile sym.4 to generate a new GUID on the fly.
Keeping the changes we made to debug.fizz, we can load the new solution file and observe what happens
when the user presses Q W E R T Y in quick succession:

$./fizz.x64 ./etc/experiments/ctm/keys.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/keys.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.014s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/keys.fizz ...
load : loaded ./etc/experiments/ctm/keys.fizz in 0.009s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.042s
load : loading completed in 0.045s
ctm.obs: ctm.chunk.u(hyqo, keypress, 113, 1)
ctm.obs: ctm.chunk.j(hyqo, keypress, 113, 1)
ctm.obs: ctm.chunk.c.l([[hyqo, keypress, 113, 1]])
ctm.obs: ctm.chunk.u(gkjx, keypress, 119, 0.800000)
ctm.obs: ctm.chunk.j(gkjx, keypress, 119, 0.800000)
ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.800000], [hyqo, keypress, 113, 0.900000]])
ctm.obs: ctm.chunk.u(aidc, keypress, 101, 0.800000)
ctm.obs: ctm.chunk.u(ubgg, keypress, 114, 0.700000)
ctm.obs: ctm.chunk.j(ubgg, keypress, 114, 0.700000)
ctm.obs: ctm.chunk.j(aidc, keypress, 101, 0.800000)
ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.700000], [ubgg, keypress, 114, 0.700000], [hyqo, keypress, 113, 0.800000], [

aidc, keypress, 101, 0.800000]])
ctm.obs: ctm.chunk.u(aktd, keypress, 116, 0.800000)
ctm.obs: ctm.chunk.u(suof, keypress, 121, 0.800000)
ctm.obs: ctm.chunk.j(aktd, keypress, 116, 0.800000)
ctm.obs: ctm.chunk.j(suof, keypress, 121, 0.800000)
ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.600000], [ubgg, keypress, 114, 0.600000], [hyqo, keypress, 113, 0.700000], [

aidc, keypress, 101, 0.700000], [aktd, keypress, 116, 0.800000], [suof, keypress, 121, 0.800000]])
ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.500000], [ubgg, keypress, 114, 0.500000], [hyqo, keypress, 113, 0.600000], [

aidc, keypress, 101, 0.600000], [aktd, keypress, 116, 0.700000], [suof, keypress, 121, 0.700000]])

14

ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.400000], [ubgg, keypress, 114, 0.400000], [hyqo, keypress, 113, 0.500000], [
aidc, keypress, 101, 0.500000], [aktd, keypress, 116, 0.600000], [suof, keypress, 121, 0.600000]])

ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.300000], [ubgg, keypress, 114, 0.300000], [hyqo, keypress, 113, 0.400000], [
aidc, keypress, 101, 0.400000], [aktd, keypress, 116, 0.500000], [suof, keypress, 121, 0.500000]])

ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.200000], [ubgg, keypress, 114, 0.200000], [hyqo, keypress, 113, 0.300000], [
aidc, keypress, 101, 0.300000], [aktd, keypress, 116, 0.400000], [suof, keypress, 121, 0.400000]])

ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0.100000], [ubgg, keypress, 114, 0.100000], [hyqo, keypress, 113, 0.200000], [
aidc, keypress, 101, 0.200000], [aktd, keypress, 116, 0.300000], [suof, keypress, 121, 0.300000]])

ctm.obs: ctm.chunk.c.l([[gkjx, keypress, 119, 0], [ubgg, keypress, 114, 0], [hyqo, keypress, 113, 0.100000], [aidc, keypress,
101, 0.100000], [aktd, keypress, 116, 0.200000], [suof, keypress, 121, 0.200000]])

ctm.obs: ctm.chunk.d(gkjx, keypress, 119, -0.100000)
ctm.obs: ctm.chunk.d(ubgg, keypress, 114, -0.100000)
ctm.obs: ctm.chunk.c.l([[hyqo, keypress, 113, 0], [aidc, keypress, 101, 0], [aktd, keypress, 116, 0.100000], [suof, keypress,

121, 0.100000]])
ctm.obs: ctm.chunk.d(hyqo, keypress, 113, -0.100000)
ctm.obs: ctm.chunk.d(aidc, keypress, 101, -0.100000)
ctm.obs: ctm.chunk.c.l([[aktd, keypress, 116, 0], [suof, keypress, 121, 0]])
ctm.obs: ctm.chunk.d(aktd, keypress, 116, -0.100000)
ctm.obs: ctm.chunk.d(suof, keypress, 121, -0.100000)

As expected, all six chunks are getting on stage then getting off the stage as their weight drops below the
threshold. Let see what happens if we press ten keys (key 1 to 0):

ctm.obs: ctm.chunk.u(cmbl, keypress, 49, 1)
ctm.obs: ctm.chunk.j(cmbl, keypress, 49, 1)
ctm.obs: ctm.chunk.c.l([[cmbl, keypress, 49, 1]])
ctm.obs: ctm.chunk.u(femx, keypress, 50, 0.800000)
ctm.obs: ctm.chunk.j(femx, keypress, 50, 0.800000)
ctm.obs: ctm.chunk.c.l([[femx, keypress, 50, 0.800000], [cmbl, keypress, 49, 0.900000]])
ctm.obs: ctm.chunk.u(dmhv, keypress, 51, 0.700000)
ctm.obs: ctm.chunk.j(dmhv, keypress, 51, 0.700000)
ctm.obs: ctm.chunk.u(npyi, keypress, 52, 0.700000)
ctm.obs: ctm.chunk.c.l([[femx, keypress, 50, 0.700000], [dmhv, keypress, 51, 0.700000], [cmbl, keypress, 49, 0.800000]])
ctm.obs: ctm.chunk.u(ejio, keypress, 53, 0.600000)
ctm.obs: ctm.chunk.j(ejio, keypress, 53, 0.600000)
ctm.obs: ctm.chunk.j(npyi, keypress, 52, 0.700000)
ctm.obs: ctm.chunk.c.l([[femx, keypress, 50, 0.600000], [dmhv, keypress, 51, 0.600000], [ejio, keypress, 53, 0.600000], [cmbl,

keypress, 49, 0.700000], [npyi, keypress, 52, 0.700000]])
ctm.obs: ctm.chunk.u(nayx, keypress, 54, 0.700000)
ctm.obs: ctm.chunk.j(nayx, keypress, 54, 0.700000)
ctm.obs: ctm.chunk.c.l([[femx, keypress, 50, 0.500000], [dmhv, keypress, 51, 0.500000], [ejio, keypress, 53, 0.500000], [cmbl,

keypress, 49, 0.600000], [npyi, keypress, 52, 0.600000], [nayx, keypress, 54, 0.700000]])
ctm.obs: ctm.chunk.u(glkl, keypress, 55, 0.900000)
ctm.obs: ctm.chunk.j(glkl, keypress, 55, 0.900000)
ctm.obs: ctm.chunk.c.l([[femx, keypress, 50, 0.400000], [dmhv, keypress, 51, 0.400000], [ejio, keypress, 53, 0.400000], [cmbl,

keypress, 49, 0.500000], [npyi, keypress, 52, 0.500000], [nayx, keypress, 54, 0.600000], [glkl, keypress, 55,
0.900000]])

ctm.obs: ctm.chunk.u(ulai, keypress, 56, 1)
ctm.obs: ctm.chunk.u(kera, keypress, 57, 0.900000)
ctm.obs: ctm.chunk.d(femx, keypress, 50, 0.300000)
ctm.obs: ctm.chunk.d(dmhv, keypress, 51, 0.300000)
ctm.obs: ctm.chunk.j(kera, keypress, 57, 0.900000)
ctm.obs: ctm.chunk.j(ulai, keypress, 56, 1)
ctm.obs: ctm.chunk.c.l([[ejio, keypress, 53, 0.300000], [cmbl, keypress, 49, 0.400000], [npyi, keypress, 52, 0.400000], [nayx,

keypress, 54, 0.500000], [glkl, keypress, 55, 0.800000], [kera, keypress, 57, 0.900000], [ulai, keypress, 56, 1]])
ctm.obs: ctm.chunk.u(onbj, keypress, 48, 1)
ctm.obs: ctm.chunk.d(ejio, keypress, 53, 0.200000)
ctm.obs: ctm.chunk.j(onbj, keypress, 48, 1)
ctm.obs: ctm.chunk.c.l([[cmbl, keypress, 49, 0.300000], [npyi, keypress, 52, 0.300000], [nayx, keypress, 54, 0.400000], [glkl,

keypress, 55, 0.700000], [kera, keypress, 57, 0.800000], [ulai, keypress, 56, 0.900000], [onbj, keypress, 48, 1]])
ctm.obs: ctm.chunk.c.l([[cmbl, keypress, 49, 0.200000], [npyi, keypress, 52, 0.200000], [nayx, keypress, 54, 0.300000], [glkl,

keypress, 55, 0.600000], [kera, keypress, 57, 0.700000], [ulai, keypress, 56, 0.800000], [onbj, keypress, 48,
0.900000]])

ctm.obs: ctm.chunk.c.l([[cmbl, keypress, 49, 0.100000], [npyi, keypress, 52, 0.100000], [nayx, keypress, 54, 0.200000], [glkl,
keypress, 55, 0.500000], [kera, keypress, 57, 0.600000], [ulai, keypress, 56, 0.700000], [onbj, keypress, 48,

0.800000]])
ctm.obs: ctm.chunk.c.l([[cmbl, keypress, 49, 0], [npyi, keypress, 52, 0], [nayx, keypress, 54, 0.100000], [glkl, keypress, 55,

0.400000], [kera, keypress, 57, 0.500000], [ulai, keypress, 56, 0.600000], [onbj, keypress, 48, 0.700000]])
ctm.obs: ctm.chunk.d(cmbl, keypress, 49, -0.100000)
ctm.obs: ctm.chunk.d(npyi, keypress, 52, -0.100000)
ctm.obs: ctm.chunk.c.l([[nayx, keypress, 54, 0], [glkl, keypress, 55, 0.300000], [kera, keypress, 57, 0.400000], [ulai,

keypress, 56, 0.500000], [onbj, keypress, 48, 0.600000]])
ctm.obs: ctm.chunk.d(nayx, keypress, 54, -0.100000)
ctm.obs: ctm.chunk.c.l([[glkl, keypress, 55, 0.200000], [kera, keypress, 57, 0.300000], [ulai, keypress, 56, 0.400000], [onbj,

keypress, 48, 0.500000]])
ctm.obs: ctm.chunk.c.l([[glkl, keypress, 55, 0.100000], [kera, keypress, 57, 0.200000], [ulai, keypress, 56, 0.300000], [onbj,

keypress, 48, 0.400000]])

15

ctm.obs: ctm.chunk.c.l([[glkl, keypress, 55, 0], [kera, keypress, 57, 0.100000], [ulai, keypress, 56, 0.200000], [onbj,
keypress, 48, 0.300000]])

ctm.obs: ctm.chunk.d(glkl, keypress, 55, -0.100000)
ctm.obs: ctm.chunk.c.l([[kera, keypress, 57, 0], [ulai, keypress, 56, 0.100000], [onbj, keypress, 48, 0.200000]])
ctm.obs: ctm.chunk.d(kera, keypress, 57, -0.100000)
ctm.obs: ctm.chunk.c.l([[ulai, keypress, 56, 0], [onbj, keypress, 48, 0.100000]])
ctm.obs: ctm.chunk.d(ulai, keypress, 56, -0.100000)
ctm.obs: ctm.chunk.c.l([[onbj, keypress, 48, 0]])
ctm.obs: ctm.chunk.d(onbj, keypress, 48, -0.100000)

When the following two chunks are emitted by the actor:

ctm.obs: ctm.chunk.u(ulai, keypress, 56, 1)
ctm.obs: ctm.chunk.u(kera, keypress, 57, 0.900000)

while the stage is at capacity, we can see that the two chunks on stage with the lowest weight get dropped
so that the two new chunks can get into the stage:

ctm.obs: ctm.chunk.d(femx, keypress, 50, 0.300000)
ctm.obs: ctm.chunk.d(dmhv, keypress, 51, 0.300000)
ctm.obs: ctm.chunk.j(kera, keypress, 57, 0.900000)
ctm.obs: ctm.chunk.j(ulai, keypress, 56, 1)
ctm.obs: ctm.chunk.c.l([[ejio, keypress, 53, 0.300000], [cmbl, keypress, 49, 0.400000], [npyi, keypress, 52, 0.400000], [nayx,

keypress, 54, 0.500000], [glkl, keypress, 55, 0.800000], [kera, keypress, 57, 0.900000], [ulai, keypress, 56, 1]])

Memorizing numbers by conscious rehearsal

As a first example of a CTM, we are going to look at simulating something that we all do (or did at some
point) frequently: memorizing one (or more) numbers by rehearsing. This will involve: having a way to
bring a number into consciouness and trying to keep it there long enough for it to be retained permanently
by an actor setup to recall numbers. Because this is an exploration of CTM, and not a realistic simulation,
we will not requires the rehearshed numbers to be rehearshed for a human realistic time. We will, however,
build a way to simulate distractions so that numbers may get dropped from the stage and thus possibly
impact rehearsing in a way that may lead to numbers getting forgotten.

To get started, let’s look first at how we would build distraction in such a scenario. All we need, is for an
actor to emit a chunk with a weight high enough to get on stage. The more of such chunks on stage, the
more load on the consciouness there will be and the more likely chunks holding the numbers we are trying
to rehearsh will get drop off (depending on the weights).

Let’s create a new fizz file called ruffle.fizz. We will put in it the definition for our distraction actor
which we will call ctm.actor.ruffle:

1 ctm.actor.ruffle {

2
3 () :- @console.keypress(114),

4 rnd.real(1,:w,$ruffle.weight.min,$ruffle.weight.max),

5 declare(ctm.chunk.u(%sym.4,ruffle,114,:w)),

6 hush;

7
8 }

Compared to what we have seen when creating the stage implementation, the procedural knowledge for the ac-
tor is fairly simple. When the user will press the R key on the keyboard, we will pick a random weight value for
the chunk within a range that is specified by the constants $ruffle.weight.min and $ruffle.weight.max.
Then we will then use the primitive declare to send the chunk to the stage and since we are assiging a
random GUID (with the volatile sym.4) for each chunks, multiple keypress events will generate as many
chunks as desired.

16

Before we can test this, we need to create a new solution file. Let’s call it memorize.json. Copy and paste
the following into it:

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["stage.fizz", "debug.fizz", "ticks.fizz", "ruffle.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.hush",

8 "value" : 5

9 },

10 {

11 "label" : "tick.dull",

12 "value" : 3

13 },

14 {

15 "label" : "tick.slow",

16 "value" : 1

17 },

18 {

19 "label" : "tick.fast",

20 "value" : 0.5

21 },

22 {

23 "label" : "stage.size",

24 "value" : 7

25 },

26 {

27 "label" : "stage.loss",

28 "value" : 0.1

29 },

30 {

31 "label" : "stage.drop",

32 "value" : -0.1

33 },

34 {

35 "label" : "ruffle.weight.min",

36 "value" : 0.7

37 },

38 {

39 "label" : "ruffle.weight.max",

40 "value" : 1.0

41 }

42]

43 }

44 }

At the bottom of it, we have added the values for the ruffle’s weight range. Any of the chunks we will be
pushing onto the stage will have a weight no smaller than 0.7. This will insure that our actor do cause some
distraction. We can then load the solution and press the R key a couple of time to check that it is working:

$./fizz.x64 ./etc/experiments/ctm/memorize.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/memorize.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.009s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.001s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.001s
load : loading ./etc/experiments/ctm/number.fizz ...
load : loaded ./etc/experiments/ctm/number.fizz in 0.003s
load : loading ./etc/experiments/ctm/memorize.fizz ...
load : loaded ./etc/experiments/ctm/memorize.fizz in 0.003s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.028s
load : loading completed in 0.031s
ctm.obs: ctm.chunk.u(erhs, ruffle, 114, 0.840543)
ctm.obs: ctm.chunk.j(erhs, ruffle, 114, 0.840543)
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.840543]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.740543]])

17

ctm.obs: ctm.chunk.u(axxl, ruffle, 114, 0.973471)
ctm.obs: ctm.chunk.j(axxl, ruffle, 114, 0.973471)
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.640543], [axxl, ruffle, 114, 0.973471]])
ctm.obs: ctm.chunk.u(gwva, ruffle, 114, 0.882959)
ctm.obs: ctm.chunk.j(gwva, ruffle, 114, 0.882959)
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.540543], [axxl, ruffle, 114, 0.873471], [gwva, ruffle, 114, 0.882959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.440543], [axxl, ruffle, 114, 0.773471], [gwva, ruffle, 114, 0.782959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.340543], [axxl, ruffle, 114, 0.673471], [gwva, ruffle, 114, 0.682959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.240543], [axxl, ruffle, 114, 0.573471], [gwva, ruffle, 114, 0.582959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.140543], [axxl, ruffle, 114, 0.473471], [gwva, ruffle, 114, 0.482959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, 0.040543], [axxl, ruffle, 114, 0.373471], [gwva, ruffle, 114, 0.382959]])
ctm.obs: ctm.chunk.c.l([[erhs, ruffle, 114, -0.059457], [axxl, ruffle, 114, 0.273471], [gwva, ruffle, 114, 0.282959]])
ctm.obs: ctm.chunk.d(erhs, ruffle, 114, -0.159457)
ctm.obs: ctm.chunk.c.l([[axxl, ruffle, 114, 0.173471], [gwva, ruffle, 114, 0.182959]])
ctm.obs: ctm.chunk.c.l([[axxl, ruffle, 114, 0.073471], [gwva, ruffle, 114, 0.082959]])
ctm.obs: ctm.chunk.c.l([[axxl, ruffle, 114, -0.026529], [gwva, ruffle, 114, -0.017041]])
ctm.obs: ctm.chunk.d(axxl, ruffle, 114, -0.126529)
ctm.obs: ctm.chunk.d(gwva, ruffle, 114, -0.117041)

As we said earlier, we need to have an actor that when requested will (attempt) to push onto the stage
a number. For this, we will adapt the keypress actor we have used previously. Create a new fizz file,
number.fizz then copy and paste the following code into it:

1 ctm.actor.number.input {

2
3 weight.value = 0.5,

4 weight.range = <0.2|1>,

5 weight.loss = 0.1,

6 started = no

7
8 } {

9
10 // send a number for every correct keypress we get

11 () :- @console.keypress(:k?[<48|57>]),

12 sub(:k,48,:n),

13 declare(ctm.chunk.u(%sym.4,number,:n,$weight.value)),

14 poke(started,yes),

15 hush;

16
17 // lower the weight as time flow

18 () :- @ctm.tick.fast(_,_),

19 peek(started,yes),

20 sub($weight,$weight.loss,:w.o),

21 rng.clamp($weight.range,:w.o,:w.c),

22 poke(weight.value,:w.c),

23 hush;

24
25 // each time one of our chunk get "on stage" we increase the weight we will use for the next chunk we try pushing

26 () :- @ctm.chunk.j(_,number,_,_),

27 add($weight,$loss,:w.o),

28 rng.clamp($weight.range,:w.o,:w.c),

29 poke(weight.value,:w.c),

30 hush;

31
32 }

Just like for the keypress actor, this actor will emit a chunk at each keypress while the weight value it will
be using will go down as time flows and go up whenever one of its chunks get onto the stage. However,
instead of accepting any keys, a constraint is set on the value that would unify with the variable k. This will
insure that only the keys 0 to 9 are able to trigger inferring over the prototype. We then substract (with
the primitive sub) 48 from the keycode so that each of the chunks contains the single digit number we are
trying to push onto the stage.

Once we add the file number.fizz to the list of files to be loaded in memorize.json, we can try it out by
pressing the key 5:

$./fizz.x64 ./etc/experiments/ctm/memorize.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

18

load : loading ./etc/experiments/ctm/memorize.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.009s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.001s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.001s
load : loading ./etc/experiments/ctm/number.fizz ...
load : loaded ./etc/experiments/ctm/number.fizz in 0.003s
load : loading ./etc/experiments/ctm/memorize.fizz ...
load : loaded ./etc/experiments/ctm/memorize.fizz in 0.003s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.028s
load : loading completed in 0.031s
ctm.obs: ctm.chunk.u(lvvt, number, 5, 0.500000)
ctm.obs: ctm.chunk.j(lvvt, number, 5, 0.500000)
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0.500000]])
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0.400000]])
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0.300000]])
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0.200000]])
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0.100000]])
ctm.obs: ctm.chunk.c.l([[lvvt, number, 5, 0]])
ctm.obs: ctm.chunk.d(lvvt, number, 5, -0.100000)

Just as we observed before, the chunk get on stage then gets removed once its weight dropped to the stage
threshold.

To continue, create a new fizz file called memorize.fizz. In it, we are going to define the actor that will
memorize the numbers. You will also need to add that file to memorize.json so that it get loaded as well.

The class of the elemental we are going to use to memorize numbers is MRKCLettered. Such class is built to
only manage statements which will be the case here, but it also support an optional short-term/long-term
storage which fits our needs here. Let’s look at the definition of the elemental as we are going to use it:

1 ctm.actor.number {

2
3 class = MRKCLettered,

4 recall.frq = $tick.hush,

5 recall.ttl = $tick.slow,

6 recall.add = $tick.slow,

7 recall.thd = $tick.dull

8
9 } {}

As you can see, we are using four built-in properties of that class of elementals to setup the recall feature
(using the tick constants we have already defined in our solution files). This class works by setting an time-to-
live value (using recall.ttl) to every statements that get asserted with a valid timestamp property. Then
each time the statement is used as part of a response to a query that the elemental gets, the time-to-live value
gets increased (by the value set in recall.add). If the value gets above a threshold value (recall.thd), the
statement get commited to permanent storage. Every so often (as set by recall.frq), the elemental looks
at all the statements it has and remove all the ones whose time have expired. In this example, we have used
for settings the various tick values. This will ensure that under normal conditions a number will get stored
in long-term memory in only 3 to 4 queries (about two seconds).

To interface this with the stage we need to create an actor which will assert (which unlike declare insures
that the statement will be retained by an elemental, creating one if needed) a ctm.actor.number statement
when a new number shows-up on stage, then query it each times the corresponding chunk is on stage:

1 ctm.actor.number.rehears {

2
3 // when a number first show-up on stage, we assert it into the store (with a time stamp)

4 () :- @ctm.chunk.j(_,number,:d,_),

5 assert(ctm.actor.number(:d),1.0,{stp = %now}),

6 hush;

7

19

8 // when a number is on stage, we query the store (in order to reharse the number)

9 () :- @ctm.chunk.c(_,number,:d,_),

10 #ctm.actor.number(:d),

11 hush;

12
13 }

Because, the class MRKCLettered only enable its recall feature on a statement if it has a timestamp as part
of its properties, we specify a frame as the last term of the primitive assert to set the timestamp (using the
volatile now) on line 5.

We are now ready to try this out, starting with a simple case where we try to recall one number. Note that
we will be using the console command spy to observe what happens to the statement storing the number as
we will be trying to reharse it. Make sure you are typing that command before pressing one of the number
key:

$./fizz.x64 ./etc/experiments/ctm/memorize.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/memorize.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.007s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.002s
load : loading ./etc/experiments/ctm/number.fizz ...
load : loaded ./etc/experiments/ctm/number.fizz in 0.004s
load : loading ./etc/experiments/ctm/memorize.fizz ...
load : loaded ./etc/experiments/ctm/memorize.fizz in 0.005s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.039s
load : loading completed in 0.042s
?- /spy(append,ctm.actor.number)
spy : observing ctm.actor.number
ctm.obs: ctm.chunk.u(pmxj, number, 7, 0.500000)
ctm.obs: ctm.chunk.j(pmxj, number, 7, 0.500000)
spy : S ctm.actor.number(7) {stp = 1542214225.950980, ttl = 1} (90.000000)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0.500000]])
spy : Q #ctm.actor.number(7) (89.999809)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 2} (89.999763)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0.400000]])
spy : Q #ctm.actor.number(7) (89.999809)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 3} (89.999733)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0.300000]])
spy : Q #ctm.actor.number(7) (89.999825)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 4} (89.999763)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0.200000]])
spy : Q #ctm.actor.number(7) (89.999794)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 5} (89.999733)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0.100000]])
spy : Q #ctm.actor.number(7) (89.999817)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 6} (89.999733)
ctm.obs: ctm.chunk.c.l([[pmxj, number, 7, 0]])
ctm.obs: ctm.chunk.d(pmxj, number, 7, -0.100000)

If we query the elemental at this point, we will get the statement containing the number which have been
memorized:

?- #ctm.actor.number(:x)
spy : Q #ctm.actor.number(:x) (89.999886)
spy : R ctm.actor.number(7) {stp = 1542214225.950980, ttl = 0} (89.999741)
-> (7) := 1.00 (0.001) 1

Note that the ttl property is 0. This indicate that the number is now permanently stored. Let see now
what happens when we are trying the memorize a number while there’s a large amount of distractions. We
will use the ruffle actor that we added earlier (bound to the key R):

20

ctm.obs: ctm.chunk.u(kvbb, ruffle, 114, 0.949761)
ctm.obs: ctm.chunk.u(lrih, ruffle, 114, 0.899560)
ctm.obs: ctm.chunk.u(sepq, ruffle, 114, 0.958070)
ctm.obs: ctm.chunk.j(lrih, ruffle, 114, 0.899560)
ctm.obs: ctm.chunk.j(kvbb, ruffle, 114, 0.949761)
ctm.obs: ctm.chunk.j(sepq, ruffle, 114, 0.958070)
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.899560], [kvbb, ruffle, 114, 0.949761], [sepq, ruffle, 114, 0.958070]])
ctm.obs: ctm.chunk.u(ljuw, number, 5, 0.500000)
ctm.obs: ctm.chunk.j(ljuw, number, 5, 0.500000)
ctm.obs: ctm.chunk.c.l([[ljuw, number, 5, 0.500000], [lrih, ruffle, 114, 0.799560], [kvbb, ruffle, 114, 0.849761], [sepq,

ruffle, 114, 0.858070]])
ctm.obs: ctm.chunk.u(hkcw, ruffle, 114, 0.811822)
ctm.obs: ctm.chunk.u(benv, ruffle, 114, 0.849987)
ctm.obs: ctm.chunk.j(hkcw, ruffle, 114, 0.811822)
ctm.obs: ctm.chunk.j(benv, ruffle, 114, 0.849987)
ctm.obs: ctm.chunk.u(cvoo, ruffle, 114, 0.872611)
ctm.obs: ctm.chunk.c.l([[ljuw, number, 5, 0.400000], [lrih, ruffle, 114, 0.699560], [kvbb, ruffle, 114, 0.749761], [sepq,

ruffle, 114, 0.758070], [hkcw, ruffle, 114, 0.811822], [benv, ruffle, 114, 0.849987]])
ctm.obs: ctm.chunk.u(osao, ruffle, 114, 0.908849)
ctm.obs: ctm.chunk.d(ljuw, number, 5, 0.300000)
ctm.obs: ctm.chunk.j(cvoo, ruffle, 114, 0.872611)
ctm.obs: ctm.chunk.j(osao, ruffle, 114, 0.908849)
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.599560], [kvbb, ruffle, 114, 0.649761], [sepq, ruffle, 114, 0.658070], [hkcw,

ruffle, 114, 0.711822], [benv, ruffle, 114, 0.749987], [cvoo, ruffle, 114, 0.872611], [osao, ruffle, 114, 0.908849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.499560], [kvbb, ruffle, 114, 0.549761], [sepq, ruffle, 114, 0.558070], [hkcw,

ruffle, 114, 0.611822], [benv, ruffle, 114, 0.649987], [cvoo, ruffle, 114, 0.772611], [osao, ruffle, 114, 0.808849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.399560], [kvbb, ruffle, 114, 0.449761], [sepq, ruffle, 114, 0.458070], [hkcw,

ruffle, 114, 0.511822], [benv, ruffle, 114, 0.549987], [cvoo, ruffle, 114, 0.672611], [osao, ruffle, 114, 0.708849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.299560], [kvbb, ruffle, 114, 0.349761], [sepq, ruffle, 114, 0.358070], [hkcw,

ruffle, 114, 0.411822], [benv, ruffle, 114, 0.449987], [cvoo, ruffle, 114, 0.572611], [osao, ruffle, 114, 0.608849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.199560], [kvbb, ruffle, 114, 0.249761], [sepq, ruffle, 114, 0.258070], [hkcw,

ruffle, 114, 0.311822], [benv, ruffle, 114, 0.349987], [cvoo, ruffle, 114, 0.472611], [osao, ruffle, 114, 0.508849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, 0.099560], [kvbb, ruffle, 114, 0.149761], [sepq, ruffle, 114, 0.158070], [hkcw,

ruffle, 114, 0.211822], [benv, ruffle, 114, 0.249987], [cvoo, ruffle, 114, 0.372611], [osao, ruffle, 114, 0.408849]])
ctm.obs: ctm.chunk.c.l([[lrih, ruffle, 114, -0.000440], [kvbb, ruffle, 114, 0.049761], [sepq, ruffle, 114, 0.058070], [hkcw,

ruffle, 114, 0.111822], [benv, ruffle, 114, 0.149987], [cvoo, ruffle, 114, 0.272611], [osao, ruffle, 114, 0.308849]])
ctm.obs: ctm.chunk.d(lrih, ruffle, 114, -0.100440)
ctm.obs: ctm.chunk.c.l([[kvbb, ruffle, 114, -0.050239], [sepq, ruffle, 114, -0.041930], [hkcw, ruffle, 114, 0.011822], [benv,

ruffle, 114, 0.049987], [cvoo, ruffle, 114, 0.172611], [osao, ruffle, 114, 0.208849]])
ctm.obs: ctm.chunk.d(kvbb, ruffle, 114, -0.150239)
ctm.obs: ctm.chunk.d(sepq, ruffle, 114, -0.141930)
ctm.obs: ctm.chunk.c.l([[hkcw, ruffle, 114, -0.088178], [benv, ruffle, 114, -0.050013], [cvoo, ruffle, 114, 0.072611], [osao,

ruffle, 114, 0.108849]])
ctm.obs: ctm.chunk.d(hkcw, ruffle, 114, -0.188178)
ctm.obs: ctm.chunk.d(benv, ruffle, 114, -0.150013)
ctm.obs: ctm.chunk.c.l([[cvoo, ruffle, 114, -0.027389], [osao, ruffle, 114, 0.008849]])
ctm.obs: ctm.chunk.d(cvoo, ruffle, 114, -0.127389)
ctm.obs: ctm.chunk.c.l([[osao, ruffle, 114, -0.091151]])
ctm.obs: ctm.chunk.d(osao, ruffle, 114, -0.191151)
?- #ctm.actor.number(:x)

In this instance, we have loaded the stage with three distraction chunks before emitting the chunk that hold
the number. We then add some more ruffles which cause the number chunk to get removed. Later on,
we query the ctm.actor.number to see if the number was memorized and we do not get any answers, as
expected.

Memorizing a list of numbers by conscious rehearsal

Let’s build upon the previous example and extend it to memorize numbers as a collection. This mean that
each time a number appears on stage we will add it a list that is being reharsed as we did for the numbers.

Let start by creating a new fizz file memlist.fizz as well as new solution file memlist.json. In the JSON
file we will be reusing the JSON from the previous example, only replacing the name of the last fizz file to
be loaded:

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["stage.fizz", "debug.fizz", "ticks.fizz", "ruffle.fizz", "number.fizz", "memlist.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.hush",

21

8 "value" : 5

9 },

10 {

11 "label" : "tick.dull",

12 "value" : 3

13 },

14 {

15 "label" : "tick.slow",

16 "value" : 1

17 },

18 {

19 "label" : "tick.fast",

20 "value" : 0.5

21 },

22 {

23 "label" : "stage.size",

24 "value" : 7

25 },

26 {

27 "label" : "stage.loss",

28 "value" : 0.1

29 },

30 {

31 "label" : "stage.drop",

32 "value" : -0.1

33 },

34 {

35 "label" : "ruffle.weight.min",

36 "value" : 0.7

37 },

38 {

39 "label" : "ruffle.weight.max",

40 "value" : 1.0

41 }

42]

43 }

44 }

In memlist.fizz, we are going first to define the elemental that will hold the list(s), just like we did for
memorizing numbers:

1 ctm.actor.list.store {

2
3 class = MRKCLettered,

4 recall.frq = $tick.hush,

5 recall.ttl = $tick.slow,

6 recall.add = $tick.slow,

7 recall.thd = $tick.dull

8
9 } {}

We will then add an new actor (call it ctm.actor.list.logic) which will be the interface between the
store, the stage and the user inputs. Here is its definition:

1 ctm.actor.list.logic {

2
3 key = nil,

4 weight = 0.6

5
6 } {

7
8 // when a new number shows up on stage, and we have no on-going list we create it

9 () :- @ctm.chunk.j(_,number,:d,_),

10 peek(key,nil)^,

11 set(:k,%sym.4),

12 poke(key,:k),

13 assert(ctm.actor.list.store(:k,[:d]),1.0,{stp = %now, ttl = 1}),

14 declare(ctm.chunk.u(:k,list,[:d],$weight)),

15 hush;

16
17 // when a new number shows up on stage, and we have we add it to the list

22

18 () :- @ctm.chunk.j(_,number,:d,_),

19 peek(key,:k?[neq(nil)])^,

20 #ctm.actor.list.store(:k,:l),

21 change([ctm.actor.list.store(:k,:l)],[ctm.actor.list.store(:k,[:d|:l]),1.0,{stp = %now}]),

22 declare(ctm.chunk.u(:k,list,[:d|:l],$weight)),

23 hush;

24
25 // for each one of our chunk broadcasted by the stage, we rehears the list so that it don’t get forgotten

26 () :- @ctm.chunk.c($key,list,_,_),

27 #ctm.actor.list.store($key,_),

28 hush;

29
30 // when the chunk that hold the list, is removed from the stage, we reset the property

31 () :- @ctm.chunk.d($key,list,_,_),

32 poke(key,nil),

33 hush;

34
35 }

It contains four prototypes dealing with three events: a new number shows-up on stage, our list is on stage
and dropped from the stage. The same trigger predicate is used on the first two predicates. This is necessary
to handle the creation of a new list when we are not already managing one. We use the property key (which
is initialized as nil) to keep a GUID associated with the list being filled. We use the very same GUID
as the first term of the ctm.actor.list.store statement we will be asserting. Note that contrary to our
previous example, we are this time providing a time-to-live (the ttl property in the statement) value along
with the timestamp. The first prototype completes with emitting a chunk for the list. The second prototype
get executed also when a number first shows-up on stage but only carry on if a list has been started (by
checking that the key property isn’t the nil value). It then query ctm.actor.list.store for the list, and
uses the primitive change to replace the statement holding the list by a new statement that include the new
number. Finally, the chunk associated with the list get emitted so that its weight get reset since it is slowly
decaying as the chunk sits on stage. On Line 26, the third prototype get triggered when the chunk for the
list is broadcasted as being on stage, and as we have done before it query ctm.actor.list.store so that
the time-to-live value of the statement increase. The last prototype resets the key property when the chunk
is removed from the stage.

Let’s load-up the solution now and see how that works when we try to memorize a list of three numbers.
Note that here again, we will use the console command spy to observe ctm.actor.list.store:

$./fizz.x64 ./etc/experiments/ctm/memlist.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/memlist.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.006s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.002s
load : loading ./etc/experiments/ctm/number.fizz ...
load : loaded ./etc/experiments/ctm/number.fizz in 0.003s
load : loading ./etc/experiments/ctm/memlist.fizz ...
load : loaded ./etc/experiments/ctm/memlist.fizz in 0.007s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.030s
load : loading completed in 0.032s
?- /spy(append,ctm.actor.list.store)
spy : observing ctm.actor.list.store
ctm.obs: ctm.chunk.u(jvvp, number, 1, 0.500000)
ctm.obs: ctm.chunk.j(jvvp, number, 1, 0.500000)
ctm.obs: ctm.chunk.u(syva, list, [1], 0.600000)
spy : Q #ctm.actor.list.store(syva, :l) (89.999062)
spy : S ctm.actor.list.store(syva, [1]) {stp = 1542223376.259085, ttl = 1} (90.000000)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0.500000]])

After the spy command, we pressed the 1 key which caused the number to be pushed onto the stage. The
ctm.chunk.j statement that is broadcasted by the stage triggers our list chunk as well as as a statement

23

ctm.actor.list.store. However, the new chunk hasn’t been taken yet in consideration by the stage as we
can see in the ctm.chunk.c.l statement.

ctm.obs: ctm.chunk.u(dyct, number, 2, 0.500000)
ctm.obs: ctm.chunk.j(dyct, number, 2, 0.500000)
spy : Q #ctm.actor.list.store(syva, :l) (89.999535)
spy : R ctm.actor.list.store(syva, [1]) {stp = 1542223376.259085, ttl = 2} (89.999496)
ctm.obs: ctm.chunk.j(syva, list, [1], 0.600000)
ctm.obs: ctm.chunk.u(syva, list, [2, 1], 0.600000)
spy : S ctm.actor.list.store(syva, [2, 1]) {stp = 1542223377.262067, ttl = 1} (90.000000)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0.400000], [dyct, number, 2, 0.500000], [syva, list, [1], 0.600000]])

As we add a new number to the stage, we observe our list being updated to include it, even though the stage
is getting broadcasted with an older version of the chunk.

ctm.obs: ctm.chunk.u(jdle, number, 3, 0.500000)
ctm.obs: ctm.chunk.j(jdle, number, 3, 0.500000)
spy : Q #ctm.actor.list.store(syva, :l) (89.999527)
spy : R ctm.actor.list.store(syva, [2, 1]) {stp = 1542223377.262067, ttl = 2} (89.999489)
ctm.obs: ctm.chunk.u(syva, list, [3, 2, 1], 0.600000)
spy : Q #ctm.actor.list.store(syva, _) (89.999634)
spy : S ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 2} (90.000000)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 2} (89.999519)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0.300000], [dyct, number, 2, 0.400000], [jdle, number, 3, 0.500000], [syva, list,

[2, 1], 0.600000]])
spy : Q #ctm.actor.list.store(syva, _) (89.999794)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 3} (89.999741)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0.200000], [dyct, number, 2, 0.300000], [jdle, number, 3, 0.400000], [syva, list,

[3, 2, 1], 0.600000]])
spy : Q #ctm.actor.list.store(syva, _) (89.999779)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 4} (89.999733)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0.100000], [dyct, number, 2, 0.200000], [jdle, number, 3, 0.300000], [syva, list,

[3, 2, 1], 0.500000]])

Eventually though, the stage’s contents reflect the list as we can see above.

spy : Q #ctm.actor.list.store(syva, _) (89.999771)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 5} (89.999718)
ctm.obs: ctm.chunk.c.l([[jvvp, number, 1, 0], [dyct, number, 2, 0.100000], [jdle, number, 3, 0.200000], [syva, list, [3, 2,

1], 0.400000]])
ctm.obs: ctm.chunk.d(jvvp, number, 1, -0.100000)
spy : Q #ctm.actor.list.store(syva, _) (89.999809)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 6} (89.999771)
ctm.obs: ctm.chunk.c.l([[dyct, number, 2, 0], [jdle, number, 3, 0.100000], [syva, list, [3, 2, 1], 0.300000]])
ctm.obs: ctm.chunk.d(dyct, number, 2, -0.100000)
spy : Q #ctm.actor.list.store(syva, _) (89.999794)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 0} (89.999741)
ctm.obs: ctm.chunk.c.l([[jdle, number, 3, 0], [syva, list, [3, 2, 1], 0.200000]])
ctm.obs: ctm.chunk.d(jdle, number, 3, -0.100000)
spy : Q #ctm.actor.list.store(syva, _) (89.999756)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 0} (89.999702)
ctm.obs: ctm.chunk.c.l([[syva, list, [3, 2, 1], 0.100000]])
spy : Q #ctm.actor.list.store(syva, _) (89.999733)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 0} (89.999680)
ctm.obs: ctm.chunk.c.l([[syva, list, [3, 2, 1], 0]])
ctm.obs: ctm.chunk.d(syva, list, [3, 2, 1], -0.100000)
?- #ctm.actor.list.store(:k,:l)
spy : Q #ctm.actor.list.store(:k, :l) (89.999886)
spy : R ctm.actor.list.store(syva, [3, 2, 1]) {stp = 1542223378.261700, ttl = 0} (89.999710)
-> (syva , [3, 2, 1]) := 1.00 (0.001) 1

Here we waited for the stage to be empty again before querying the list store directly, but we could have
done it much sooner.

Let see now what happens if we add distractions after each new numbers (1 to 7) we try to add to a list:

ctm.obs: ctm.chunk.u(ootu, number, 1, 0.500000)
ctm.obs: ctm.chunk.u(djod, ruffle, 114, 0.945456)
ctm.obs: ctm.chunk.u(akah, ruffle, 114, 0.858300)
ctm.obs: ctm.chunk.j(ootu, number, 1, 0.500000)
ctm.obs: ctm.chunk.j(akah, ruffle, 114, 0.858300)
ctm.obs: ctm.chunk.u(xosy, list, [1], 0.600000)
ctm.obs: ctm.chunk.j(djod, ruffle, 114, 0.945456)

24

ctm.obs: ctm.chunk.c.l([[ootu, number, 1, 0.500000], [akah, ruffle, 114, 0.858300], [djod, ruffle, 114, 0.945456]])
ctm.obs: ctm.chunk.u(ftwf, number, 2, 0.500000)
ctm.obs: ctm.chunk.u(fnfs, ruffle, 114, 0.716353)
ctm.obs: ctm.chunk.j(ftwf, number, 2, 0.500000)
ctm.obs: ctm.chunk.j(xosy, list, [1], 0.600000)
ctm.obs: ctm.chunk.j(fnfs, ruffle, 114, 0.716353)
ctm.obs: ctm.chunk.u(xosy, list, [2, 1], 0.600000)
ctm.obs: ctm.chunk.c.l([[ootu, number, 1, 0.400000], [ftwf, number, 2, 0.500000], [xosy, list, [1], 0.600000], [fnfs, ruffle,

114, 0.716353], [akah, ruffle, 114, 0.758300], [djod, ruffle, 114, 0.845456]])
ctm.obs: ctm.chunk.u(lxqp, ruffle, 114, 0.942872)
ctm.obs: ctm.chunk.u(cyew, number, 3, 0.500000)
ctm.obs: ctm.chunk.d(ootu, number, 1, 0.300000)
ctm.obs: ctm.chunk.j(cyew, number, 3, 0.500000)
ctm.obs: ctm.chunk.u(xosy, list, [3, 2, 1], 0.600000)
ctm.obs: ctm.chunk.j(lxqp, ruffle, 114, 0.942872)
ctm.obs: ctm.chunk.c.l([[ftwf, number, 2, 0.400000], [cyew, number, 3, 0.500000], [xosy, list, [2, 1], 0.600000], [fnfs,

ruffle, 114, 0.616353], [akah, ruffle, 114, 0.658300], [djod, ruffle, 114, 0.745456], [lxqp, ruffle, 114, 0.942872]])
ctm.obs: ctm.chunk.u(fsay, ruffle, 114, 0.812914)
ctm.obs: ctm.chunk.u(jgfw, ruffle, 114, 0.997678)
ctm.obs: ctm.chunk.d(ftwf, number, 2, 0.300000)
ctm.obs: ctm.chunk.d(cyew, number, 3, 0.400000)
ctm.obs: ctm.chunk.j(fsay, ruffle, 114, 0.812914)
ctm.obs: ctm.chunk.j(jgfw, ruffle, 114, 0.997678)
ctm.obs: ctm.chunk.c.l([[fnfs, ruffle, 114, 0.516353], [akah, ruffle, 114, 0.558300], [xosy, list, [3, 2, 1], 0.600000], [djod

, ruffle, 114, 0.645456], [fsay, ruffle, 114, 0.812914], [lxqp, ruffle, 114, 0.842872], [jgfw, ruffle, 114, 0.997678]])
ctm.obs: ctm.chunk.u(wypf, number, 4, 0.500000)
ctm.obs: ctm.chunk.u(jpne, ruffle, 114, 0.941351)
ctm.obs: ctm.chunk.u(lxvq, ruffle, 114, 0.918608)
ctm.obs: ctm.chunk.d(fnfs, ruffle, 114, 0.416353)
ctm.obs: ctm.chunk.d(akah, ruffle, 114, 0.458300)
ctm.obs: ctm.chunk.d(xosy, list, [3, 2, 1], 0.500000)

Oopsy ... too much new distractions caused the chunk related to the list to get dropped from the stage. As
new numbers get onto the stage, a new list is started:

ctm.obs: ctm.chunk.j(wypf, number, 4, 0.500000)
ctm.obs: ctm.chunk.u(yubh, list, [4], 0.600000)
ctm.obs: ctm.chunk.j(lxvq, ruffle, 114, 0.918608)
ctm.obs: ctm.chunk.j(jpne, ruffle, 114, 0.941351)
ctm.obs: ctm.chunk.c.l([[wypf, number, 4, 0.500000], [djod, ruffle, 114, 0.545456], [fsay, ruffle, 114, 0.712914], [lxqp,

ruffle, 114, 0.742872], [jgfw, ruffle, 114, 0.897678], [lxvq, ruffle, 114, 0.918608], [jpne, ruffle, 114, 0.941351]])
ctm.obs: ctm.chunk.u(cbhi, number, 5, 0.500000)
ctm.obs: ctm.chunk.d(wypf, number, 4, 0.400000)
ctm.obs: ctm.chunk.d(djod, ruffle, 114, 0.445456)
ctm.obs: ctm.chunk.j(cbhi, number, 5, 0.500000)
ctm.obs: ctm.chunk.j(yubh, list, [4], 0.600000)
ctm.obs: ctm.chunk.u(yubh, list, [5, 4], 0.600000)
ctm.obs: ctm.chunk.c.l([[cbhi, number, 5, 0.500000], [yubh, list, [4], 0.600000], [fsay, ruffle, 114, 0.612914], [lxqp, ruffle

, 114, 0.642872], [jgfw, ruffle, 114, 0.797678], [lxvq, ruffle, 114, 0.818608], [jpne, ruffle, 114, 0.841351]])
ctm.obs: ctm.chunk.u(ybgx, ruffle, 114, 0.838483)
ctm.obs: ctm.chunk.u(hpet, ruffle, 114, 0.987456)
ctm.obs: ctm.chunk.d(cbhi, number, 5, 0.400000)
ctm.obs: ctm.chunk.d(fsay, ruffle, 114, 0.512914)
ctm.obs: ctm.chunk.j(ybgx, ruffle, 114, 0.838483)
ctm.obs: ctm.chunk.j(hpet, ruffle, 114, 0.987456)
ctm.obs: ctm.chunk.c.l([[lxqp, ruffle, 114, 0.542872], [yubh, list, [5, 4], 0.600000], [jgfw, ruffle, 114, 0.697678], [lxvq,

ruffle, 114, 0.718608], [jpne, ruffle, 114, 0.741351], [ybgx, ruffle, 114, 0.838483], [hpet, ruffle, 114, 0.987456]])
ctm.obs: ctm.chunk.u(pehn, number, 6, 0.500000)
ctm.obs: ctm.chunk.u(bdyp, ruffle, 114, 0.822495)
ctm.obs: ctm.chunk.u(acni, ruffle, 114, 0.849296)
ctm.obs: ctm.chunk.d(lxqp, ruffle, 114, 0.442872)
ctm.obs: ctm.chunk.d(yubh, list, [5, 4], 0.500000)

But the new list also get kicked from the stage.

ctm.obs: ctm.chunk.j(bdyp, ruffle, 114, 0.822495)
ctm.obs: ctm.chunk.j(acni, ruffle, 114, 0.849296)
ctm.obs: ctm.chunk.c.l([[jgfw, ruffle, 114, 0.597678], [lxvq, ruffle, 114, 0.618608], [jpne, ruffle, 114, 0.641351], [ybgx,

ruffle, 114, 0.738483], [bdyp, ruffle, 114, 0.822495], [acni, ruffle, 114, 0.849296], [hpet, ruffle, 114, 0.887456]])
ctm.obs: ctm.chunk.u(tuvv, number, 7, 0.500000)
ctm.obs: ctm.chunk.u(vgaa, ruffle, 114, 0.842811)
ctm.obs: ctm.chunk.d(jgfw, ruffle, 114, 0.497678)
ctm.obs: ctm.chunk.j(vgaa, ruffle, 114, 0.842811)
ctm.obs: ctm.chunk.c.l([[lxvq, ruffle, 114, 0.518608], [jpne, ruffle, 114, 0.541351], [ybgx, ruffle, 114, 0.638483], [bdyp,

ruffle, 114, 0.722495], [acni, ruffle, 114, 0.749296], [hpet, ruffle, 114, 0.787456], [vgaa, ruffle, 114, 0.842811]])
ctm.obs: ctm.chunk.u(uuqr, ruffle, 114, 0.847225)
ctm.obs: ctm.chunk.d(lxvq, ruffle, 114, 0.418608)
ctm.obs: ctm.chunk.j(uuqr, ruffle, 114, 0.847225)

25

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, 0.441351], [ybgx, ruffle, 114, 0.538483], [bdyp, ruffle, 114, 0.622495], [acni,
ruffle, 114, 0.649296], [hpet, ruffle, 114, 0.687456], [vgaa, ruffle, 114, 0.742811], [uuqr, ruffle, 114, 0.847225]])

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, 0.341351], [ybgx, ruffle, 114, 0.438483], [bdyp, ruffle, 114, 0.522495], [acni,
ruffle, 114, 0.549296], [hpet, ruffle, 114, 0.587456], [vgaa, ruffle, 114, 0.642811], [uuqr, ruffle, 114, 0.747225]])

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, 0.241351], [ybgx, ruffle, 114, 0.338483], [bdyp, ruffle, 114, 0.422495], [acni,
ruffle, 114, 0.449296], [hpet, ruffle, 114, 0.487456], [vgaa, ruffle, 114, 0.542811], [uuqr, ruffle, 114, 0.647225]])

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, 0.141351], [ybgx, ruffle, 114, 0.238483], [bdyp, ruffle, 114, 0.322495], [acni,
ruffle, 114, 0.349296], [hpet, ruffle, 114, 0.387456], [vgaa, ruffle, 114, 0.442811], [uuqr, ruffle, 114, 0.547225]])

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, 0.041351], [ybgx, ruffle, 114, 0.138483], [bdyp, ruffle, 114, 0.222495], [acni,
ruffle, 114, 0.249296], [hpet, ruffle, 114, 0.287456], [vgaa, ruffle, 114, 0.342811], [uuqr, ruffle, 114, 0.447225]])

ctm.obs: ctm.chunk.c.l([[jpne, ruffle, 114, -0.058649], [ybgx, ruffle, 114, 0.038483], [bdyp, ruffle, 114, 0.122495], [acni,
ruffle, 114, 0.149296], [hpet, ruffle, 114, 0.187456], [vgaa, ruffle, 114, 0.242811], [uuqr, ruffle, 114, 0.347225]])

ctm.obs: ctm.chunk.d(jpne, ruffle, 114, -0.158649)
ctm.obs: ctm.chunk.c.l([[ybgx, ruffle, 114, -0.061517], [bdyp, ruffle, 114, 0.022495], [acni, ruffle, 114, 0.049296], [hpet,

ruffle, 114, 0.087456], [vgaa, ruffle, 114, 0.142811], [uuqr, ruffle, 114, 0.247225]])
ctm.obs: ctm.chunk.d(ybgx, ruffle, 114, -0.161517)
ctm.obs: ctm.chunk.c.l([[bdyp, ruffle, 114, -0.077505], [acni, ruffle, 114, -0.050704], [hpet, ruffle, 114, -0.012544], [vgaa,

ruffle, 114, 0.042811], [uuqr, ruffle, 114, 0.147225]])
ctm.obs: ctm.chunk.d(bdyp, ruffle, 114, -0.177505)
ctm.obs: ctm.chunk.d(acni, ruffle, 114, -0.150704)
ctm.obs: ctm.chunk.d(hpet, ruffle, 114, -0.112544)
ctm.obs: ctm.chunk.c.l([[vgaa, ruffle, 114, -0.057189], [uuqr, ruffle, 114, 0.047225]])
ctm.obs: ctm.chunk.d(vgaa, ruffle, 114, -0.157189)
ctm.obs: ctm.chunk.c.l([[uuqr, ruffle, 114, -0.052775]])
ctm.obs: ctm.chunk.d(uuqr, ruffle, 114, -0.152775)
?- #ctm.actor.list.store(:k,:l)

In the end, no list was memorized. Obviously this is a contrived example. If memorizing a list of numbers
was important for the CTM, the weight associated with the chunk should have been set as high as needed
to insure that the list will not have been dropped from the stage.

Adding numbers from a list consciously

In this example, we are going to assume that the list of numbers from the previous example was memorized
and that we now need to calculate the sum of all the numbers consciously. This entail the need to keep the
list on stage as well as the position within the list at which we currently are, and the value of the sum so
far. We will also keep the length of the list. That is four different chunks that need to be on stage at the
same time for each steps of the operation to be carried out. To help with this, we are going to add a support
actor whose role will be to keep a set of variables and maintains them on stage whenever possible so that
they can be used by any actor.

Create a new fizz file, calling it variables.fizz. The actor we are going to define in it will provide an
interface for others to use in order to create new variables, change their values or delete them:

1 ctm.actor.variables {

2
3 weight = 0.6,

4 vars = {}

5
6 } {

7
8 // set the value of a variable identified by a label (new variable)

9 (set,:label,:value) :- peek(vars,:vars), !frm.label(:vars,:label)^,

10 set(%sym.4,:guid),

11 frm.store(:vars,:label,[:guid,:value],:vars.o),

12 poke(vars,:vars.o),

13 declare(ctm.chunk.u(:guid,variable,[:label,:value],$weight));

14
15 // set the value of a variable identified by a label (replace value)

16 (set,:label,:value) :- peek(vars,:vars), frm.fetch(:vars,:label,[:guid,_]),

17 frm.store(:vars,:label,[:guid,:value],:vars.o),

18 poke(vars,:vars.o),

19 declare(ctm.chunk.u(:guid,variable,[:label,:value],$weight));

20
21 // get the value stored for a given label (if the variable isn’t yet on stage, the call won’t complete)

22 (get,:label,:value) :- peek(vars,:vars),

23 frm.fetch(:vars,:label,[_,:value]);

24
25 // remove an existing value using its label

26 (cls,:label) :- peek(vars,:vars), frm.fetch(:vars,:label,[:guid,:value]),

26

27 frm.erase(:vars,:label,:vars.o),

28 poke(vars,:vars.o),

29 declare(ctm.chunk.u(:guid,variable,[:label,:value],$stage.drop));

30
31 // regularly, we update out chunks to keep them on stage

32 () :- @ctm.tick.dull(_,_),

33 frm.pairs($vars,:pairs),

34 lst.member([:label,[:guid,:value]],:pairs),

35 declare(ctm.chunk.u(:guid,variable,[:label,:value],$weight)),

36 hush;

37
38 }

The elemental uses its vars property to store all the variables that will be created. The last defined prototype
relies on one of the ticker to emit a chunk per variables. The primitive frm.pairs unifies its second term
with a list containing each of the variables. It then uses the primitive lst.member to iterate over all of
the variables stored in that list and emit a chunk for each one. This work because fizz will create as many
concurrent inferring as needed to handle all the statements generated by the call to lst.member.

The first four prototypes don’t show anything that we haven’t seen so far in this article. For each, the
symbol used as the first term, helps the elemental pick the right prototype to execute when a query is made.
Whenever a variable is created or modified, the corresponding chunk will be emitted by the elemental. Note
that we are creating an GUID for each of the variables. It will be used to identify the chunk.

To try this new actor, let’s copy the solution file from the previous example and rename it sumlist-c.fizz
and replace in it memlist.fizz by variables.fizz. We can then load the solution and use the console to
instruct ctm.actor.variables to create a conscious variable, then modify its value and finally remove it:

$./fizz.x64 ./etc/experiments/ctm/sumlist-c.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/sumlist-c.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.007s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.002s
load : loading ./etc/experiments/ctm/variables.fizz ...
load : loaded ./etc/experiments/ctm/variables.fizz in 0.007s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.037s
load : loading completed in 0.040s
?- #ctm.actor.variables(set,a,12)
-> () := 1.00 (0.002) 1
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.j(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.500000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.400000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.300000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.500000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.500000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.400000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.300000]])
?- #ctm.actor.variables(set,a,13)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.500000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 12], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.400000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 12], 0.600000]])
-> () := 0.00 (0.001) 1
-> () := 1.00 (0.002) 2
ctm.obs: ctm.chunk.u(wspf, variable, [a, 13], 0.600000)

27

ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.600000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 13], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.500000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.500000]])
?- #ctm.actor.variables(cls,a)
ctm.obs: ctm.chunk.u(wspf, variable, [a, 13], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.400000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.500000]])
ctm.obs: ctm.chunk.u(wspf, variable, [a, 13], 0.600000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.600000]])
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], 0.500000]])
-> () := 1.00 (0.002) 1
ctm.obs: ctm.chunk.u(wspf, variable, [a, 13], -0.100000)
ctm.obs: ctm.chunk.c.l([[wspf, variable, [a, 13], -0.100000]])
ctm.obs: ctm.chunk.d(wspf, variable, [a, 13], -0.200000)

Note that removing a variable isn’t immediate as there is no support in our implementation of a CTM for
removing a chunk. What we do instead is to update the chunk with a weight that is the threshold used by
the stage (the constant $stage.drop).

Let’s now create a new fizz file (call it sumlist-c.fizz) to contain the rest of the example. We will start
by adding an elemental to hold the list for which the sum must be computed:

1 ctm.actor.list.store {

2
3 (xgib,[5,2,7,4,1]);

4
5 }

We are then going to add the actor, using two elementals to implement it. The main one, called ctm.actor.sum,
will use a keypress event to start the computation and uses the stage frequent broadcasts as the way to step
in the computation:

1 ctm.actor.sum {

2
3 list.key = xgib

4
5 } {

6
7 // when the ’s’ key is pressed, we get the list and creates the "variables"

8 () :- @console.keypress(115),

9 #ctm.actor.list.store($list.key,:l),

10 lst.length(:l,:s),

11 #ctm.actor.variables(set,index,0),

12 #ctm.actor.variables(set,count,:s),

13 #ctm.actor.variables(set,sum,0),

14 #ctm.actor.variables(set,list,:l),

15 hush;

16
17 // each the chunks on stage get broadcasted (as a frame), we get the variable and insure that we have them all and

continue the computation

18 () :- @ctm.chunk.c.f({variable = :vars}), !is.variable(:vars),

19 lst.member([_,[list,:l],_],:vars),

20 lst.member([_,[index,:i],_],:vars),

21 lst.member([_,[count,:n],_],:vars),

22 lst.member([_,[sum,:s],_],:vars),

23 #ctm.actor.sum.compute(:l,:n,:i,:s),

24 hush;

25
26 }

When the key S is pressed, the elemental will query ctm.actor.list.store for the list, get its length and
then set the four variables using ctm.actor.variables, each with an appropriate initial value. The second
prototype, uses the broadcasting of the stage as a frame to get all the variables and retrieve the actual value of
each ones in order to perform the computation. If distractions are causing some of the variables to be dropped

28

from the stage, the corresponding primitive call to lst.member will fails causing the inferring to fails. Even-
tually, since the actor ctm.actor.variables will keep emitting the variables as chunks, there would come a
time when all four variables will again be conscious at the same time. And thus the computation will resume.

The last bit of this example we need to define is the elemental ctm.actor.sum.compute which given all four
variables, performs the addition of the number at the current index in the list and update the value of the
appropriate variables:

1 ctm.actor.sum.compute { // compute the sum, step-by-step and update the variables on stage

2
3 (:l,:n,:n,:s)^ :- #ctm.actor.variables(cls,index),

4 #ctm.actor.variables(cls,list),

5 #ctm.actor.variables(cls,count),

6 #ctm.actor.variables(cls,sum),

7 console.puts("sum = ",:s);

8
9 (:l,:n,:i,:s) :- lst.item(:l,:i,:v), add(:s,:v,:s2), add(:i,1,:i2),

10 #ctm.actor.variables(set,index,:i2),

11 #ctm.actor.variables(set,sum,:s2);

12
13 }

The first prototype handle the end of the operation. When the index in the list is equal (second and third
terms are the same) to the length of the list, we will output the computed sum of the list and remove all four
variables. For all the other times the elemental get queried, we retrieve (using lst.item) the number at the
given index in the list, add its value to the current sum value and increase the index in the list by 1. The
prototype ends by updating the value of the two variables that changed during the iteration over the list.

Once you have added the new file we just created to sumlist-c.json, you are ready to give this a try:

$./fizz.x64 ./etc/experiments/ctm/sumlist-c.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/sumlist-c.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.012s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.003s
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.002s
load : loading ./etc/experiments/ctm/variables.fizz ...
load : loaded ./etc/experiments/ctm/variables.fizz in 0.007s
load : loading ./etc/experiments/ctm/sumlist-c.fizz ...
load : loaded ./etc/experiments/ctm/sumlist-c.fizz in 0.008s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.042s
load : loading completed in 0.045s
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 0], 0.600000)
ctm.obs: ctm.chunk.u(ucba, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 0], 0.600000)
ctm.obs: ctm.chunk.u(gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.j(vpxi, variable, [index, 0], 0.600000)
ctm.obs: ctm.chunk.j(ucba, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.j(towl, variable, [sum, 0], 0.600000)
ctm.obs: ctm.chunk.j(gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[vpxi, variable, [index, 0], 0.600000], [ucba, variable, [count, 5], 0.600000], [towl, variable, [sum,

0], 0.600000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000]])
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 5], 0.600000)
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.u(ucba, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 5], 0.600000)
ctm.obs: ctm.chunk.u(gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], 0.500000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.500000], [vpxi,

variable, [index, 1], 0.600000], [towl, variable, [sum, 5], 0.600000]])
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 2], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 7], 0.600000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], 0.600000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000], [vpxi,

variable, [index, 2], 0.600000], [towl, variable, [sum, 7], 0.600000]])

29

ctm.obs: ctm.chunk.u(vpxi, variable, [index, 3], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 14], 0.600000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], 0.500000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.500000], [vpxi,

variable, [index, 3], 0.600000], [towl, variable, [sum, 14], 0.600000]])
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 4], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 18], 0.600000)
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 4], 0.600000)
ctm.obs: ctm.chunk.u(ucba, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 18], 0.600000)
ctm.obs: ctm.chunk.u(gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], 0.400000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.400000], [vpxi,

variable, [index, 4], 0.600000], [towl, variable, [sum, 18], 0.600000]])
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 5], 0.600000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 19], 0.600000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], 0.600000], [gbae, variable, [list, [5, 2, 7, 4, 1]], 0.600000], [vpxi,

variable, [index, 5], 0.600000], [towl, variable, [sum, 19], 0.600000]])
sum = 19
ctm.obs: ctm.chunk.u(vpxi, variable, [index, 5], -0.100000)
ctm.obs: ctm.chunk.u(gbae, variable, [list, [5, 2, 7, 4, 1]], -0.100000)
ctm.obs: ctm.chunk.u(ucba, variable, [count, 5], -0.100000)
ctm.obs: ctm.chunk.u(towl, variable, [sum, 19], -0.100000)
ctm.obs: ctm.chunk.c.l([[ucba, variable, [count, 5], -0.100000], [gbae, variable, [list, [5, 2, 7, 4, 1]], -0.100000], [vpxi,

variable, [index, 5], -0.100000], [towl, variable, [sum, 19], -0.100000]])
ctm.obs: ctm.chunk.d(ucba, variable, [count, 5], -0.200000)
ctm.obs: ctm.chunk.d(gbae, variable, [list, [5, 2, 7, 4, 1]], -0.200000)
ctm.obs: ctm.chunk.d(vpxi, variable, [index, 5], -0.200000)
ctm.obs: ctm.chunk.d(towl, variable, [sum, 19], -0.200000)

There we have it, the sum of the list is indeed 19.

Enrolling help from others

Let’s now look at variation of the previous example, where the knowledge of how to add two numbers is
unknown to the actor ctm.actor.sum.compute. When faced with this situation, the actor must attempt to
enroll the help of any actor capable of performing the task at hand.

To implement this, we will going to use a pattern that will rely on the stage for the broadcasting of a
query chunk to all actors. When an actor gets a query that it can answers, it will push onto the stage
a reply chunk which will contains the GUID of the query. This will allow the actor having posted the
query to pick any corresponding replies from the stage. The template we will use for the query chunks
will be ctm.chunk.u(jjuu,query,add(5,2),1) while the reply chunks will be expected to be akin to
ctm.chunk.u(nvqk,reply,[jjuu,add(5,2,7)],1).

To get started, make a copy of the fizz file called sumlist-c.fizz naming it sumlist-c2.fizz. We then
will add a new actor that is capable of adding two numbers (by using the add primitive):

1 ctm.actor.binary.op {

2
3 queries = {}

4
5 } {

6
7 () :- @ctm.chunk.j(:g,query,add(:a,:b),:w),

8 !frm.label($queries,:g),

9 set(%sym.4,:g.r),

10 frm.store($queries,:g,:g.r,:q),

11 poke(queries,:q),

12 add(:a,:b,:c),

13 declare(ctm.chunk.u(:g.r,reply,[:g,add(:a,:b,:c)],:w));

14
15 () :- @ctm.chunk.d(:g,query,add(_,_),_),

16 frm.fetch($queries,:g,:g.r),

17 frm.erase($queries,:g,:q),

18 poke(queries,:q),

19 declare(ctm.chunk.u(:g.r,reply,[:g,null],$stage.drop));

20
21 }

30

The actor contains two trigger based prototypes which will allow it to react to a query chunk being either
added or removed to/from the stage. As the actor will reply by pushing onto the stage its own chunk. The
actor is going to keep track of the queries it has answered so that it can cleanup the reply chunk from the
stage when the original query chunk gets dropped from the stage. Note that it isn’t mandatory as eventually,
the stage will dropped the chunk as its weight trend down. Line 8 to 11 modifies the queries property of
the actor to store a mapping of the query’s GUID to the reply’s GUID. On line 16 to 18, the mapping is tested
then removed from the property. Both prototypes make uses of the declare primitive to publish the reply
chunk, as we have seen in the previously examples.

Now, we need to modify the actor ctm.actor.sum.compute to send a query chunk and handle any reply
instead of calling the add primitive.

1 ctm.actor.sum.compute {

2
3 add.value = null,

4 add.index = null

5
6 } {

7
8 (:l,:n,:n,:s)^ :- #ctm.actor.variables(cls,index),

9 #ctm.actor.variables(cls,list),

10 #ctm.actor.variables(cls,count),

11 #ctm.actor.variables(cls,sum),

12 console.puts("sum = ",:s);

13
14 (:l,:n,:i,:s) :- peek(add.value,null), peek(add.index,null),

15 poke(add.value,%sym.4), poke(add.index,%sym.4),

16 lst.item(:l,:i,:v),

17 declare(ctm.chunk.u($add.value,query,add(:s,:v),1)),

18 declare(ctm.chunk.u($add.index,query,add(:i,1),1));

19
20 () :- @ctm.chunk.j(_,reply,[$add.value,add(_,_,:r)],_),

21 poke(add.value,null),

22 #ctm.actor.variables(set,sum,:r);

23
24 () :- @ctm.chunk.j(_,reply,[$add.index,add(_,_,:r)],_),

25 poke(add.index,null),

26 #ctm.actor.variables(set,index,:r);

27
28 }

To do that, we modify the second prototype (on line 14) to declare two query chunks, one for adding the
value at the current position in the list to the running sum, and the second one to increment the value of the
index. We use two properties of the actor to store the GUID assigned to each of the chunks so that we can
match any reply to the correct one. The last two prototypes are trigger based and allow the actor to react to
any matching reply chunks. They basically do what the original version of the actor was doing, by setting
the newly calculated value of the variables sum and index. In it, we also (line 21 and 25) reset the value of
the properties to null. Without doing so, the above prototype will never complete since it checks that both
properties are null (line 14).

Last, but not least, we need to make a small modification to the main actor ctm.actor.sum. Since the
actor depends on the frequent broadcasting of the stage to perform each steps in the summation (one per
broadcast), the usage of the query/reply pattern will cause the actor to no longer be in sync with the stage’s
broadcasts. We can fix that, by only moving forward in the computation steps when the value of the index
variable is different from the previous one:

1 ctm.actor.sum {

2
3 list.key = xgib,

4 index = -1

5
6 } {

7
8 () :- @console.keypress(115),

31

9 #ctm.actor.list.store($list.key,:l),

10 lst.length(:l,:s),

11 #ctm.actor.variables(set,index,0),

12 #ctm.actor.variables(set,count,:s),

13 #ctm.actor.variables(set,sum,0),

14 #ctm.actor.variables(set,list,:l),

15 poke(index,-1),

16 hush;

17
18 () :- @ctm.chunk.c.f({variable = :vars}), !is.variable(:vars),

19 lst.member([_,[list,:l],_],:vars),

20 lst.member([_,[index,:i?[neq($index)]],_],:vars),

21 lst.member([_,[count,:n],_],:vars),

22 lst.member([_,[sum,:s],_],:vars),

23 poke(index,:i),

24 #ctm.actor.sum.compute(:l,:n,:i,:s),

25 hush;

26
27 }

As we have seen before, the first prototype use the ’s’ key trigger to get the list then creates the ”variables”.
The second prototype also works as before, computing the sum of the list based on the variables’ values. This
time however, like we discussed, we check that the index has really changed since the last broadcasting from
the stage.

To test this, copy the JSON file called sumlist-c.json into sumlist-c2.json then modify its fourth line
to point to the new fizz file we just created. You can then run it like we did before. You will notice that
this time around, because there’s more broadcasting from the stage in between summation steps, it takes
sensibly longer to compute the total sum.

Making connections at runtime

An inportant part of the CTM concept is that learning in implemented (in part) by having actors directly
talking to other actors instead of going via the stage. Originaly, an actor doesn’t know of any others and so
when it does need to get something done or need help figuring something up, it relies on the stage broad-
casting to reach anybody that can be of help. This is what we saw in the above revised example. Overtime,
if the answers delivered by an actor to queries from another actor are deemed valuable, a direct link between
the two actors can be established, forgoing the stage. In this section, wer are going to modify the previous
example to demonstrate that point. Note that this (like all other examples, in fact) is a much simplified
scenario. As such, we will assume that the actor tasked with computing the sum of the list will create a link
with the very first actor to send a reply to its ”add two numbers” query.

To get started, we will make a copy of the fizz file called sumlist-c2.fizz naming it sumlist-c3.fizz. We
then modify the actor ctm.actor.binary.op by adding to it a few prototypes that can be called directly to
compute, for example, the sum of two numbers in line 21 to 24:

1 ctm.actor.binary.op {

2
3 queries = {}

4
5 } {

6
7 () :- @ctm.chunk.j(:g,query,add(:a,:b),:w),

8 !frm.label($queries,:g),

9 set(%sym.4,:g.r),

10 frm.store($queries,:g,:g.r,:q),

11 poke(queries,:q),

12 add(:a,:b,:c),

13 declare(ctm.chunk.u(:g.r,reply,[:g,$self,add(:a,:b,:c)],:w));

14
15 () :- @ctm.chunk.d(:g,query,add(_,_),_),

16 frm.fetch($queries,:g,:g.r),

17 frm.erase($queries,:g,:q),

18 poke(queries,:q),

32

19 declare(ctm.chunk.u(:g.r,reply,[:g,$self,null],$stage.drop));

20
21 (add(:a,:b),:c) :- add(:a,:b,:c);

22 (sub(:a,:b),:c) :- sub(:a,:b,:c);

23 (mul(:a,:b),:c) :- mul(:a,:b,:c);

24 (div(:a,:b),:c) :- div(:a,:b,:c);

25
26 }

Another change that we made is to add the label of the actor it-self to the chunks that the actor delares
(line 13 and 19) using the constant $self as the second term in the data contained by the chunks. This will
enable any actor to know from whom the reply came from and use that to directly query the actor.

Next, we will modify the ctm.actor.sum.compute actor to allow it to notice who replied to its query so
that it can directly query it for any further summation steps. Let’s start by adding the following prototype:

1 (:l,:n,:i,:s) :- peek(helper,_?[neq(null)])^,

2 lst.item(:l,:i,:v),

3 #ctm.actor.sum.compute.add(:s,:v,:s2),

4 #ctm.actor.sum.compute.add(:i,1,:i2),

5 #ctm.actor.variables(set,index,:i2),

6 #ctm.actor.variables(set,sum,:s2);

It offers an alternative to be considered by the solver when ctm.actor.sum is querying the actor at each
stage broadcast. For the actor to know when to post its query to the stage or to go the direct route, we will
use a new property which we will call helper. On line 1, we fetch (using the primitive peek) the value of
that property and insure that the inference continues only if the value doesn’t unifies with the symbol null
(which we will have to initialize the property to). On line 3 and 4, we now have a predicate to an elemental
called ctm.actor.sum.compute.add. This elemental will be the one that will link adding two numbers with
the actor that knows how to do it.

We now modify the original prototype to include a check that the very same property unifies to null. When
the elemental is getting queried by the actor ctm.actor.sum, both of the prototypes will be considered but
only one will be selected for further inferencing based on the value of the helper property:

1 (:l,:n,:i,:s) :- peek(helper,null)^,

2 peek(add.value,null), peek(add.index,null),

3 poke(add.value,%sym.4), poke(add.index,%sym.4),

4 lst.item(:l,:i,:v),

5 declare(ctm.chunk.u($add.value,query,add(:s,:v),1)),

6 declare(ctm.chunk.u($add.index,query,add(:i,1),1));

The two trigger based prototypes also need to be modified to take into consideration the added term to the
chunks ctm.chunk.j:

1 () :- @ctm.chunk.j(_,reply,[$add.value,:s,add(_,_,:r)],_),

2 poke(add.value,null),

3 #ctm.actor.variables(set,sum,:r),

4 ~self(link(:s));

5
6 () :- @ctm.chunk.j(_,reply,[$add.index,:s,add(_,_,:r)],_),

7 poke(add.index,null),

8 #ctm.actor.variables(set,index,:r),

9 ~self(link(:s));

At the end of both prototypes, we also add a recursive predicate passing to it for term a functor that contains
the label of the actor that replied. This will be implemented in the elemental as follow:

33

1 (link(:s)) :- peek(helper,null)^, poke(helper,:s),

2 sym.cat($self,".add",:l),

3 define(:l,[\:a,\:b,\:c],[],[

4 [[],[:s,[add(\:a,\:b),\:c]]]

5]);

6 (link(_)) :- true;

In the first prototype, we first insure that the helper value is still null, then change it to the label of the
actor. On line 2, we create a new symbol by concatenating the label of the elemental with ".add" before
calling the primitive define to specify a prototype to be created. If there is no existing elemental with that
label, the substrate will instantiate one, otherwise the new prototype will be inserted in the knowledge of an
elemental named ctm.actor.sum.compute.add. Thus, from that point on, the actor will directly query the
actor instead of posting on the stage. The second prototype is necessary to insure that such query always
returns successfully when the helper property has already been set, that is every summation step after the
firt one.

Let’s give this new example a try:

$./fizz.x64 ./etc/experiments/ctm/sumlist-c3.json
fizz 0.6.0-D (20190502.2241) [lnx.x64|8|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/sumlist-c3.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loading ./etc/experiments/ctm/ruffle.fizz ...
load : loaded ./etc/experiments/ctm/ruffle.fizz in 0.002s
load : loading ./etc/experiments/ctm/variables.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.002s
load : loading ./etc/experiments/ctm/sumlist-c3.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.007s
load : loaded ./etc/experiments/ctm/variables.fizz in 0.007s
load : loaded ./etc/experiments/ctm/sumlist-c3.fizz in 0.019s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.032s
load : loading completed in 0.035s
ctm.obs: ctm.chunk.u(qdap, variable, [index, 0], 0.600000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 0], 0.600000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.u(qdap, variable, [index, 0], 0.600000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 0], 0.600000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.j(qdap, variable, [index, 0], 0.600000)
ctm.obs: ctm.chunk.j(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.j(txlc, variable, [sum, 0], 0.600000)
ctm.obs: ctm.chunk.j(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[qdap, variable, [index, 0], 0.600000], [duuf, variable, [count, 5], 0.600000], [txlc, variable, [sum,

0], 0.600000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000]])
ctm.obs: ctm.chunk.u(umqn, query, add(0, 5), 1)
ctm.obs: ctm.chunk.u(tvwq, query, add(0, 1), 1)

As before, the ctm.actor.sum actor establishes on the stage as many chunks as it needs variables to con-
sciously performs the operation requested from it. It then goes on to pushing onto the stage two query
chunks, the first one to add the value 5 to the current value of the sum, and the second to increase the index
within the list by 1. As both chunks get accepted onto the stage, they are eventually seen by the actor
ctm.actor.binary.op:

ctm.obs: ctm.chunk.j(umqn, query, add(0, 5), 1)
ctm.obs: ctm.chunk.u(jvym, reply, [umqn, ctm.actor.binary.op, add(0, 5, 5)], 1)
ctm.obs: ctm.chunk.j(tvwq, query, add(0, 1), 1)
ctm.obs: ctm.chunk.u(snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 1)

The actor performs the requested computation, then push onto the stage a reply chunk, identifying the query
it is replying too, as well as identifying itself.

34

ctm.obs: ctm.chunk.c.l([[qdap, variable, [index, 0], 0.600000], [duuf, variable, [count, 5], 0.600000], [txlc, variable, [sum,
0], 0.600000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000], [umqn, query, add(0, 5), 1], [tvwq, query, add(0,

1), 1]])
ctm.obs: ctm.chunk.d(qdap, variable, [index, 0], 0.500000)
ctm.obs: ctm.chunk.j(jvym, reply, [umqn, ctm.actor.binary.op, add(0, 5, 5)], 1)
ctm.obs: ctm.chunk.j(snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 1)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 5], 0.600000)
ctm.obs: ctm.chunk.u(qdap, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.c.l([[duuf, variable, [count, 5], 0.500000], [txlc, variable, [sum, 0], 0.500000], [vpcf, variable, [list,

[5, 2, 7, 4, 1]], 0.500000], [umqn, query, add(0, 5), 0.900000], [tvwq, query, add(0, 1), 0.900000], [jvym, reply, [umqn
, ctm.actor.binary.op, add(0, 5, 5)], 1], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 1]])

When the reply chunks are noticed by the actor ctm.actor.sum, the related variables are updated by pushing
onto the stage the updated chunk:

ctm.obs: ctm.chunk.u(qdap, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 5], 0.600000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.d(duuf, variable, [count, 5], 0.400000)
ctm.obs: ctm.chunk.j(qdap, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.c.l([[vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.400000], [txlc, variable, [sum, 5], 0.600000], [qdap,

variable, [index, 1], 0.600000], [umqn, query, add(0, 5), 0.800000], [tvwq, query, add(0, 1), 0.800000], [jvym, reply, [
umqn, ctm.actor.binary.op, add(0, 5, 5)], 0.900000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)],
0.900000]])

As the capacity of the stage is limited, some of the chunk may get dropped as we see above and below. While
this may results in delay, the system is resilient as the actor will continue pushing its variables chunks at
each tick.

ctm.obs: ctm.chunk.d(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.j(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.c.l([[txlc, variable, [sum, 5], 0.600000], [qdap, variable, [index, 1], 0.600000], [duuf, variable, [count,

5], 0.600000], [umqn, query, add(0, 5), 0.700000], [tvwq, query, add(0, 1), 0.700000], [jvym, reply, [umqn, ctm.actor.
binary.op, add(0, 5, 5)], 0.800000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.800000]])

ctm.obs: ctm.chunk.c.l([[txlc, variable, [sum, 5], 0.500000], [qdap, variable, [index, 1], 0.500000], [duuf, variable, [count,
5], 0.500000], [umqn, query, add(0, 5), 0.600000], [tvwq, query, add(0, 1), 0.600000], [jvym, reply, [umqn, ctm.actor.

binary.op, add(0, 5, 5)], 0.700000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.700000]])
ctm.obs: ctm.chunk.u(qdap, variable, [index, 1], 0.600000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 5], 0.600000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[txlc, variable, [sum, 5], 0.400000], [qdap, variable, [index, 1], 0.400000], [duuf, variable, [count,

5], 0.400000], [umqn, query, add(0, 5), 0.500000], [tvwq, query, add(0, 1), 0.500000], [jvym, reply, [umqn, ctm.actor.
binary.op, add(0, 5, 5)], 0.600000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.600000]])

ctm.obs: ctm.chunk.d(umqn, query, add(0, 5), 0.400000)
ctm.obs: ctm.chunk.u(jvym, reply, [umqn, ctm.actor.binary.op, null], -0.100000)
ctm.obs: ctm.chunk.j(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.c.l([[tvwq, query, add(0, 1), 0.400000], [jvym, reply, [umqn, ctm.actor.binary.op, add(0, 5, 5)],

0.500000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.500000], [txlc, variable, [sum, 5], 0.600000], [
qdap, variable, [index, 1], 0.600000], [duuf, variable, [count, 5], 0.600000], [vpcf, variable, [list, [5, 2, 7, 4, 1]],
0.600000]])

Eventually though, the actor can continue perfoming the steps of its computation, this time by using the
direct link it created to the actor ctm.actor.binary.op as we can observe below by the lack of query chunks:

ctm.obs: ctm.chunk.u(qdap, variable, [index, 2], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 7], 0.600000)
ctm.obs: ctm.chunk.c.l([[jvym, reply, [umqn, ctm.actor.binary.op, null], -0.100000], [tvwq, query, add(0, 1), 0.300000], [snsc

, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.400000], [duuf, variable, [count, 5], 0.500000], [vpcf, variable,
[list, [5, 2, 7, 4, 1]], 0.500000], [txlc, variable, [sum, 7], 0.600000], [qdap, variable, [index, 2], 0.600000]])

ctm.obs: ctm.chunk.u(qdap, variable, [index, 3], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 14], 0.600000)
ctm.obs: ctm.chunk.u(qdap, variable, [index, 3], 0.600000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 14], 0.600000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000)
ctm.obs: ctm.chunk.d(jvym, reply, [umqn, ctm.actor.binary.op, null], -0.200000)
ctm.obs: ctm.chunk.c.l([[tvwq, query, add(0, 1), 0.200000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)],

0.300000], [duuf, variable, [count, 5], 0.400000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.400000], [txlc, variable,
[sum, 14], 0.600000], [qdap, variable, [index, 3], 0.600000]])

35

ctm.obs: ctm.chunk.u(qdap, variable, [index, 4], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 18], 0.600000)
ctm.obs: ctm.chunk.c.l([[tvwq, query, add(0, 1), 0.100000], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)],

0.200000], [duuf, variable, [count, 5], 0.600000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.600000], [txlc, variable,
[sum, 18], 0.600000], [qdap, variable, [index, 4], 0.600000]])

ctm.obs: ctm.chunk.u(qdap, variable, [index, 5], 0.600000)
ctm.obs: ctm.chunk.u(txlc, variable, [sum, 19], 0.600000)
ctm.obs: ctm.chunk.c.l([[tvwq, query, add(0, 1), 0], [snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], 0.100000], [duuf

, variable, [count, 5], 0.500000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], 0.500000], [txlc, variable, [sum, 19],
0.600000], [qdap, variable, [index, 5], 0.600000]])

ctm.obs: ctm.chunk.u(qdap, variable, [index, 5], -0.100000)
ctm.obs: ctm.chunk.u(vpcf, variable, [list, [5, 2, 7, 4, 1]], -0.100000)
ctm.obs: ctm.chunk.u(duuf, variable, [count, 5], -0.100000)
sum = 19

A few ticks later, the actor complete the summation of the list and cleanup of the stage occurs:

ctm.obs: ctm.chunk.u(txlc, variable, [sum, 19], -0.100000)
ctm.obs: ctm.chunk.d(tvwq, query, add(0, 1), -0.100000)
ctm.obs: ctm.chunk.u(snsc, reply, [tvwq, ctm.actor.binary.op, null], -0.100000)
ctm.obs: ctm.chunk.c.l([[duuf, variable, [count, 5], -0.100000], [vpcf, variable, [list, [5, 2, 7, 4, 1]], -0.100000], [txlc,

variable, [sum, 19], -0.100000], [qdap, variable, [index, 5], -0.100000], [snsc, reply, [tvwq, ctm.actor.binary.op, add
(0, 1, 1)], 0]])

ctm.obs: ctm.chunk.d(duuf, variable, [count, 5], -0.200000)
ctm.obs: ctm.chunk.d(vpcf, variable, [list, [5, 2, 7, 4, 1]], -0.200000)
ctm.obs: ctm.chunk.d(txlc, variable, [sum, 19], -0.200000)
ctm.obs: ctm.chunk.d(qdap, variable, [index, 5], -0.200000)
ctm.obs: ctm.chunk.d(snsc, reply, [tvwq, ctm.actor.binary.op, add(0, 1, 1)], -0.100000)
ctm.obs: ctm.chunk.j(snsc, reply, [tvwq, ctm.actor.binary.op, null], -0.100000)
ctm.obs: ctm.chunk.c.l([[snsc, reply, [tvwq, ctm.actor.binary.op, null], -0.100000]])
ctm.obs: ctm.chunk.d(snsc, reply, [tvwq, ctm.actor.binary.op, null], -0.200000)

Integrating in the up-tree

For the final example in this article, we are going to look at a component of the Blums’ CTM concept which
we have been ignoring so far: the up-tree that integrates related chunks before they are seen by the stage.
In it, we will be looking at two actors attempting to push chunks that are in opposition onto the stage: one
expressing a positive sentiment while the other expresses a negative sentiment.

Refering to the description of the CTM at the beginning of this article, we know that chunks can gets
integrated between many actors that are (somehow) associated. While how the association is done is still
unknown, the rule when this happens is that the chunk with the highest magnitude is the one getting pushed-
up, with the weight as the sum of the weights of the chunks. For practical reason, we are going to assume
here that the integration may happens between more than two actors. We will also assume that a new
chunk, independent of the chunks involved in the integration is emitted as the integration occurs. Lastly,
our implementation of the up-tree will see each node in the tree as an independent elemental.

To start, create a new fizz file calling it utree.fizz. In it, we are first going to add the two actors which will
be linked to the same node on the up-tree. Since they will operate in the same way, we are going to make
use of the elemental cloning support in fizz and only fully define the first one. Whenever the key associated
with the actor is pressed, a chunk will be emitted. The more we emit the chunk, the higher the weight of
the chunk will be:

1 ctm.actor.yay {

2
3 key = 121, // ’y’ key

4 label = yay,

5 weight = 0,

6 weight.rng = <0|1>

7 loss = -0.1,

8 gain = +0.1

9
10 } {

36

11
12 // increase the weight at each keypress and send chunk

13 () :- @console.keypress($key),

14 add($weight,$gain,:w.o),

15 rng.clamp($weight.rng,:w.o,:w.c),

16 poke(weight,:w.c),

17 ~self(self,:u),

18 declare(ctm.chunk.r(:u,$label,$key,:w.c)),

19 hush;

20
21 // lower the weight as time flow and send chunk

22 () :- @ctm.tick.slow(_,_),

23 add($weight,$loss,:w.o),

24 rng.clamp($weight.rng,:w.o,:w.c),

25 poke(weight,:w.c),

26 ~self(self,:u),

27 declare(ctm.chunk.r(:u,$label,$key,:w.c)),

28 hush;

29
30 // get randomly assigned uid or create one if needed

31 (self,:u) :- peek(uid,:u)^;

32 (self,:u) :- set(:u,%sym.4), poke(uid,:u);

33
34 }

35
36 ctm.actor.nay {

37
38 clone = ctm.actor.yay,

39 key = 110, // ’n’ key

40 label = nay,

41 weight.rng = <-1,0>

42 loss = +0.1,

43 gain = -0.1

44
45 } {}

By using different value for the same properties, we have setup ctm.actor.yay and ctm.actor.nay to work
identically but in opposite. For example, the more we press in the N key, the lower the weight of the chunk
will get for ctm.actor.nay. In order to work, we are going to have to use a solution file where the stage’s
threshold value is much lower than what we have used before. Before we get any further, create the solution
file utree.json and copy into it the following:

1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : ["stage.fizz", "debug.fizz", "ticks.fizz", "utree.fizz"],

5 "globals" : [

6 {

7 "label" : "tick.hush",

8 "value" : 5

9 },

10 {

11 "label" : "tick.dull",

12 "value" : 3

13 },

14 {

15 "label" : "tick.slow",

16 "value" : 1

17 },

18 {

19 "label" : "tick.fast",

20 "value" : 0.5

21 },

22 {

23 "label" : "stage.size",

24 "value" : 7

25 },

26 {

27 "label" : "stage.loss",

28 "value" : 0.1

29 },

30 {

31 "label" : "stage.drop",

32 "value" : -2

37

33 },

34 {

35 "label" : "ruffle.weight.min",

36 "value" : 0.7

37 },

38 {

39 "label" : "ruffle.weight.max",

40 "value" : 1.0

41 }

42]

43 }

44 }

This set the threshold to the value of -2 which will work better in this scenario. Now, you may have noticed
in the procedural knowledge for ctm.actor.yay that instead of declaring a chunk with ctm.chunk.u we are
using ctm.chunk.r. This is requiered since we want the chunks emitted by both of these actors to not go
directly to the stage. The elemental we are creating to serve as the up-tree node will be using a trigger
predicate for ctm.chunk.r and emitting its chunks with ctm.chunk.u if it is a final node or ctm.chunk.r if
it is itself connected to another up-tree node.

Let’s define now the up-tree node. We will rely on properties to configure the node as this will allow for the
elemental to be easily cloned when multiple nodes are requiered:

1 ctm.utree.node {

2
3 uid = xgib,

4 frm = {},

5 lbl = [yay,nay],

6 out = ctm.chunk.u

7
8 } {

9
10 () :- @ctm.chunk.r(:g?[neq($uid)],:l?[lst.member($lbl)],:d,:w),

11 frm.store($frm,:g,[:l,:d,:w],:frm.o), poke(frm,:frm.o),

12 #ctm.utree.push($uid,:frm.o,$out),

13 hush;

14
15 }

The node’s properties are: the GUID to be assigned to any chunk emitted by the node (uid property), a
frame containing all the chunks received (frm property), the labels of the chunks the node will accept (lbl
property) and the type of chunk to send up-tree (out property).

The elemental contains a single prototype which uses, as discussed earlier, ctm.chunk.r as a trigger predicate.
To minimize the false triggers, the first term in the predicate is constrained to not be the GUID employed by
the elemental. This will matter when the node is connected to another node instead of sending its chunks
directly to the stage. Also, since there could be more than one node dealing with chunks, we contraint the
label of the chunk to be present in the lbl property. Assuming the inferring continues, the received chunk is
added to the frame and we write it back onto the property before using a secondary elemental to carry out
the integration:

1 ctm.utree.push {

2
3 (:u,:f,:out) :- frm.labels(:f,:k.f), lst.mix(:k.f,:k),

4 #ctm.utree.select(:f,:k,[_,:l,:d,_],:w),

5 declare(:out,[:u,:l,:d,:w]);

6
7 }

The elemental’s prototype get a list of all the chunks’ GUID in the frame (using the property frm.labels)
then scramble the list using lst.mix. This may seems like an odd thing to do, but this will allow for the

38

chunks emitted by the elemental to alternate between all the received chunks when they have the same
weight. The inferring then use another secondary elemental to select the chunk and weight before it emit it.
Since we will only care about the label and the data from the chunk, we unify the list that will be provided
as third term to the predicate with a list where the head and tail terms are wildcard variables.

Selecting the right chunk means that we need to compute the sum of the weights of all the chunks, but that
we also need to get the chunks with the highest magnitude. This is done here by using two elementals:

1 ctm.utree.select {

2
3 (:f,:k,:c,:w) :- #ctm.utree.sum(:f,:k,:w), #ctm.utree.max.w(:f,:k,:c);

4
5 }

Here are the two new elementals definitions as well as one supporting elemental:

1 ctm.utree.max.a { // pick the chunk of two with the highest weight magnitude

2
3 ([:k.1,:l.1,:d.1,:w.1],[:k.2,:l.2,:d.2,:w.2],[:k.1,:l.1,:d.1,:w.1]) :- mao.abs(:w.1,:a.1), mao.abs(:w.2,:a.2),

4 gte(:a.1,:a.2)^;

5 ([:k.1,:l.1,:d.1,:w.1],[:k.2,:l.2,:d.2,:w.2],[:k.2,:l.2,:d.2,:w.2]) :- true;

6
7 }

8
9 ctm.utree.max.w { // get the chunk stored in the frame with the highest weight magnitude

10
11 (_,[],nil)^ :- true;

12 (:f,[:k],[:k,:l,:d,:w]) :- frm.fetch(:f,:k,[:l,:d,:w]);

13 (:f,[:k.1|:r],:c) :- frm.fetch(:f,:k.1,[:l.1,:d.1,:w.1]), ~self(:f,:r,[:k.2,:l.2,:d.2,:w.2]),

14 #ctm.utree.max.a([k.1,:l.1,:d.1,:w.1],[:k.2,:l.2,:d.2,:w.2],:c);

15
16 }

17
18 ctm.utree.sum { // compute the sum of the weights of all the chunks in the frame

19
20 (_,[],0)^ :- true;

21 (:f,[:k],:w) :- frm.fetch(:f,:k,[_,_,:w]);

22 (:f,[:k|:r],:s) :- frm.fetch(:f,:k,[_,_,:w]), ~self(:f,:r,:s.1), add(:w,:s.1,:s);

23
24 }

If we run the example without changing anything to the actors, we can observe the flipping of the chunk
coming from the up-tree:

$./fizz.x64 ./etc/experiments/ctm/utree.json
fizz 0.5.D-X (20181110.2324) [lnx.x64|4|w|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ctm/utree.json ...
load : loading ./etc/experiments/ctm/stage.fizz ...
load : loading ./etc/experiments/ctm/debug.fizz ...
load : loaded ./etc/experiments/ctm/debug.fizz in 0.009s
load : loading ./etc/experiments/ctm/ticks.fizz ...
load : loaded ./etc/experiments/ctm/ticks.fizz in 0.001s
load : loading ./etc/experiments/ctm/utree.fizz ...
load : loaded ./etc/experiments/ctm/utree.fizz in 0.011s
load : loaded ./etc/experiments/ctm/stage.fizz in 0.024s
load : loading completed in 0.028s
ctm.obs: ctm.chunk.r(rogm, yay, 121, 0)
ctm.obs: ctm.chunk.r(udiy, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.r(rogm, yay, 121, 0)
ctm.obs: ctm.chunk.r(udiy, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.j(xgib, nay, 110, 0)

39

ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.c.l([[xgib, nay, 110, 0]])
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.r(rogm, yay, 121, 0)
ctm.obs: ctm.chunk.r(udiy, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.c.l([[xgib, nay, 110, 0]])
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.r(rogm, yay, 121, 0)
ctm.obs: ctm.chunk.r(udiy, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.u(xgib, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.c.l([[xgib, yay, 121, 0]])

If we now press the Y key a couple of times, we can see the chunk coming from the node is definitly positive:

ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.300000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.300000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.300000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.200000)
ctm.obs: ctm.chunk.r(etve, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.c.l([[xgib, yay, 121, 0.300000]])
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.300000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.300000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.300000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.400000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.500000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.500000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.500000)
ctm.obs: ctm.chunk.r(dblg, yay, 121, 0.400000)
ctm.obs: ctm.chunk.r(etve, nay, 110, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.400000)
ctm.obs: ctm.chunk.c.l([[xgib, yay, 121, 0.500000]])

And we press the N key, we will observe the weight of the chunk drop as it becomes the sum of the weight
of both chunks:

ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.300000)
ctm.obs: ctm.chunk.r(xtom, nay, 110, -0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.200000)
ctm.obs: ctm.chunk.r(xtom, nay, 110, -0.200000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)
ctm.obs: ctm.chunk.r(ocnh, yay, 121, 0.200000)
ctm.obs: ctm.chunk.r(xtom, nay, 110, -0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.c.l([[xgib, yay, 121, 0.100000]])
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0)
ctm.obs: ctm.chunk.u(xgib, yay, 121, 0.100000)

40

