
Building a simple room exploring autonomous robot with fizz and

LEGO®Mindstorms®EV3

Jean-Louis Villecroze

jlv@f1zz.org @CocoaGeek

June 21, 2019

Abstract

In this article1, we will detail the implementation of a simple room exploring autonomous robot, built
from LEGO®Mindstorms®and running on the EV3 Intelligent brick.

Prerequisite

A basic understanding of the concepts behind fizz (version 0.6 and up) is expected from the reader of this
article. It is suggested to read the introductory article Building a simple stock prices monitor with fizz 2 first
or at least read sections two to four of the user manual for an overview of the language and runtime. The
complete source code discussed in this article can be downloaded from the author’s web site 3.

Running fizz on the LEGO®Mindstorms®

Let’s get started by seeing how to run fizz on the EV3 Intelligent brick. First, you need an SD card to flash
the custom Linux distribution called ev3dev4. Once you have flashed the image and inserted the card in the
SD port of the brick, plug in a USB WiFi dongle in the unit and press the middle button to get it booting.
If the SD card is bootable, the EV3 will boot from it instead of booting the standard Mindstorms OS from
its internal flash storage. The EV3, being far from a workhorse, will take some time to boot and display the
Brickman UI which you will need to use to setup the WiFi connection. The setup will be saved so you won’t
have to do that again. Once the unit is connected to your local network, you can use ssh to log into it (the
default user for ev3dev is robot with the password is maker) and install the Linux build of fizz :

jlv@arrakis:~$ ssh robot@192.168.1.21
Password:
Linux ev3dev 4.14.96-ev3dev-2.3.2-ev3 #1 PREEMPT Sun Jan 27 21:27:35 CST 2019 armv5tejl

_____ _
_____ _|___ / __| | _____ __

/ _ \ \ / / |_ \ / _‘ |/ _ \ \ / /
| __/\ V / ___) | (_| | __/\ V /
___| _/ |____/ __,_|___| _/

Debian stretch on LEGO MINDSTORMS EV3!
Last login: Fri Jun 7 02:09:10 2019 from 192.168.1.29
robot@ev3dev:~$ wget http://f1zz.org/downloads/fizz.0.6.0-X-LNX.tgz
--2019-06-07 03:08:29-- http://f1zz.org/downloads/fizz.0.6.0-X-LNX.tgz
Resolving f1zz.org (f1zz.org)... 149.56.222.2
Connecting to f1zz.org (f1zz.org)|149.56.222.2|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 24741747 (24M) [application/x-tar]
Saving to: fizz.0.6.0-X-LNX.tgz

fizz.0.6.0-X-LNX.tgz 100%[==>] 23.59M 724KB/s
in 34s

2019-06-07 03:09:04 (701 KB/s) - fizz.0.6.0-X-LNX.tgz saved [24741747/24741747]

robot@ev3dev:~$ tar xvzf fizz.0.6.0-X-LNX.tgz
robot@ev3dev:~$ cd fizz.0.6.0-X
robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

1Thanks to Robert Wasmann (@retrospasm) for providing feedback and reviewing this document.
2http://f1zz.org/downloads/iex.pdf
3http://f1zz.org/downloads/ev3.tgz
4https://www.ev3dev.org/

1

As the EV3’s hardware is more limited (arm926ej-s) than more recent embedded boards, fizz has a special
build for that platform (fizz.ev3) where not all modules are available (notably LGR and WWW). Keep in mind
also that performance is also lacking.

We can test that fizz is running with one of the simpler samples:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/samples/calc.fizz
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/samples/calc.fizz ...
load : loaded ./etc/samples/calc.fizz in 1.236s
load : loading completed in 1.367s
?- #calc([[5,mul,2],mul,[1,add,:v]],130)
-> (12) := 1.00 (0.903) 1

Just running fizz on the EV3 isn’t enough to have access to the unit’s sensors and motors. A EV3 module
needs to be loaded in fizz and some specific elementals must be running on the substrate for fizz to be
accessing the unit capabilities.

The robot

We are going to use a pretty standard design for a mobile robot which will only use the blocks that comes
with the Education version of the LEGO®Mindstorms®kit5. In this article, we won’t be describing the
actual step-by-step assembly of the robot, but here are a couple of pictures to give you an idea of how it was
put together:

5https://education.lego.com/en-us/middle-school/intro/mindstorms-ev3

2

Here is the list of the sensors and motors you will need to recreate it:

2 LEGO EV3 Large Servo Motor
1 LEGO EV3 Medium Servo Motor
1 LEGO EV3 Ultrasonic Sensor
1 LEGO EV3 Gyro Sensor
1 LEGO EV3 Color Sensor
1 LEGO EV3 Touch Sensor

With this in mind, the basic functions the robot has are as follows:

� use the two medium motors for tank steering type mobility

� use the gyroscope to keep track of the heading

� use an orientable sonic sensor to look for obstacles

� use a color sensor to sense close proximity of a low obstacle (since the Sonic sensor is higher than the
main body of the robot)

� use the touch sensor as a (software) power button

Altough, the software should run entirely on the EV3 Intelligent brick, we will make provisions for it to use
the clusterisation capability of fizz so that parts of the logic can be run outside of the physical robot on a
much faster, and separate computer.

Lastly, as it is painfully slow to use vi directly on the EV3, what follows assumes that you will be using a
MacOS or Linux computer with your favorite code editor and copying the files over to the EV3 placing them
in /home/robot/fizz.0.6.0-X/etc/ev3.

Predicates pattern

As all of the elementals provided by the EV3 module follows the same pattern when it comes to interacting
with them, we are going to follow that pattern and apply it to all the elementals we may be creating. That
is, we will use specific predicates to read or write values (via peek, poke) and execute (or cancel) specific
functions (via call, halt).

Each predicate will have two terms: a symbol (either peek, poke, call or halt) followed by a functor or a
list of functors. For examples:

#ev3.something(poke,[value.a(30),value.b(hello)]) set the values of value.a and value.b.
#ev3.something(peek,value.a(:a)) get the value of value.a.
#ev3.something(call,do.it(45)) start the do.it function with 45 as argument.
#ev3.something(halt) abort any running function.

Similarly, when an elemental will be publishing something, it will use the same pattern with the symbol hint

as the first term in the statement. For example:

ev3.sen.touch(hint, pressed(1)) the Touch Sensor is pressed down.
ev3.sen.touch(hint, pressed(0)) the Touch Sensor was released.

3

System, motors and sensors

To get started, let’s create a first fizz file that will describe the core elementals that are necessary for the
EV3 module to be usable. We will call this file system.fizz:

1 ev3.sys {

2
3 class = EV3CSYSLEGOSystem

4
5 }

6
7 ev3.sys.led.0 {

8
9 class = EV3CSYSLEGOLed,

10 index = 0

11
12 }

13
14 ev3.sys.led.1 {

15
16 class = EV3CSYSLEGOLed,

17 index = 1

18
19 }

In it, we define three elementals each mapped to a specific class of elemental that is provided by the EV3

module. On line 1, we define ev3.sys which along with providing a way to read the device’s battery status,
will watch over plugging and unplugging of sensors and motors. It also provides some core functionalities for
the other elementals in the modules. On lines 7 and 14, we define the elementals that control the two LEDs
available on the EV3. The index property indicates which of the LEDs (0 is the left one) the elemental uses.

To try this, we need to create a solution file (JSON formatted) that can be loaded by fizz and load
system.fizz as well as any modules we may be using. Create that file with the name robot.json and
copy the following content into it. It simply indicates the modules and the source files to be loaded:

1 {

2 "solution" : {

3 "modules" : ["modEV3"],

4 "sources" : ["system.fizz"],

5 "globals" : []

6 }

7 }

If we now use that file with fizz , we can query the battery status and change the LEDs brightness. Note
that each of the LEDs is actually build from two physical LEDs: one green and one red.

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.125s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.253s
load : loading completed in 0.515s
?- #ev3.sys(peek,bat.voltage.p(:b))
-> (0.440722) := 1.00 (0.068) 1
?- #ev3.sys.led.0(poke,g(0.5))
-> () := 1.00 (0.028) 1
?- #ev3.sys.led.1(poke,r(1))
-> () := 1.00 (0.025) 1

We are now going to describe the sensor layout for the robot by defining the required elementals in a new
fizz file which we will call sensors.fizz. We first define the elemental handling the LEGO Touch sensor
(which we will be using to power ON or OFF the robot):

4

1 ev3.sen.touch {

2
3 class = EV3CSENLEGOTouch,

4 port = port2,

5 verbose = yes

6
7 }

On line 4, we indicate which port of the EV3 unit the sensor is connected to. If you have connected it to
another one of the four possible ports, you will have to modify it there (possible choices are port1, port2,
port3 and port4). The following property we set is verbose. This is a common property for an elemental

which when set to yes indicates that the elemental should output some traces during its execution so that
we get a better sense of what is going on. In this case, mainly if the physical sensor is detected on port2 or not.

We will now define the elemental for the LEGO Color sensor:

1 ev3.sen.color {

2
3 class = EV3CSENLEGOColor,

4 port = port4,

5 mode = reflected,

6 verbose = yes

7
8 }

Just like the previous elemental, we specify the port and verbose property but also (on line 5) indicates the
mode in which the sensor must operate. Here, we pick the reflected mode which is the most suited for close
proximity detection as the amount of reflected light will increase as the robot gets closer to a reflecting surface.

Moving on to the LEGO Ultrasonic sensor:

1 ev3.sen.sonic {

2
3 class = EV3CSENLEGOSonic,

4 port = port3,

5 mode = continuous,

6 verbose = yes

7
8 }

Here also, we set the mode in which the sensor will operate. The continuous mode will have the sensor
continuously sensing the distance to the obstacle in its line-of-sight.

Lastely, we define the LEGO Gyroscope sensor:

1 ev3.sen.gyros {

2
3 class = EV3CSENLEGOGyros,

4 port = port1,

5 mode = angle1axis,

6 verbose = yes

7
8 }

As we are using it to sense the orientation around the vertical axis of the robot, we will use the mode
angle1axis. For more details on this sensor’s (or others) modes, refer to the fizz manual.

Once we add the new fizz file to our solution (robot.json):

5

1 {

2 "solution" : {

3 "modules" : ["modEV3"],

4 "sources" : ["system.fizz","sensors.fizz"],

5 "globals" : []

6 }

7 }

We can relaunch fizz and start reading from the sensors. We’ll use the command spy to see the statements

published by ev3.sen.touch when the button is pressed. Note also that before the second reading from the
gyroscope, the robot was rotated by 90 degrees to its left:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.193s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.563s
load : loading completed in 1.004s
ev3.sen.gyros : sensor detected!
?- /spy(append,ev3.sen.touch)
spy : observing ev3.sen.touch
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)
?- #ev3.sen.color(peek,value(:v))
-> (0.010000) := 1.00 (0.044) 1
?- #ev3.sen.sonic(peek,value(:v))
-> (0.321000) := 1.00 (0.039) 1
?- #ev3.sen.gyros(peek,value(:v))
-> (0) := 1.00 (0.044) 1
?- #ev3.sen.gyros(peek,value(:v))
-> (-93) := 1.00 (0.037) 1

For the three motors we are using on the robot, we are going to create a new file called motors.fizz and
define in it an elemental for each one:

1 ev3.act.motor.l {

2
3 class = EV3CACTLEGOMotor,

4 port = portA,

5 speed = 90,

6 verbose = yes

7
8 }

9
10 ev3.act.motor.r {

11
12 class = EV3CACTLEGOMotor,

13 port = portD,

14 speed = 90,

15 verbose = yes

16
17 }

18
19 ev3.act.motor.t {

20
21 class = EV3CACTLEGOMotor,

22 port = portC,

23 speed = 270,

24 stopaction = hold,

25 verbose = yes

26
27 }

6

As the EV3 module doesn’t differentiate between medium and small motors, we will use the same class of
elemental for each of the tacho motors. Using the property port we specify where each one is plugged in.
You may need to adjust that as needed for your robot (possible choices are portA, portB, portC and portD).
For each of the motors, we use the speed property to set the default rotational speed of the motor (ex-
pressed in degree per second). The two elementals ev3.act.motor.l and ev3.act.motor.r are the motors
that will be used to drive the robot around, while ev3.act.motor.t will be used to change the ultrasonic
sensor orientation. For the later, we specify the property stopaction to define what it should do when the
requested position is reached. Here, we will use the hold mode as we want the motor to hold its position.
This is needed as there may be some resistance coming from the cable connecting the sonic sensor to the
EV3 in some orientations.

Once we add motors.fizz to our solution file (robot.json):

1 {

2 "solution" : {

3 "modules" : ["modEV3"],

4 "sources" : ["system.fizz","sensors.fizz","motors.fizz"],

5 "globals" : []

6 }

7 }

We can relaunch fizz and test sending commands to the top motor:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.205s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.569s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.449s
ev3.act.motor.t : motor detected!
load : loading completed in 1.574s
?- #ev3.act.motor.t(call,by(-45))
-> () := 1.00 (0.036) 1
?- #ev3.act.motor.t(peek,position(:p))
-> (-44) := 1.00 (0.036) 1

Heartbeat and power button

Let’s continue enabling our robot, by making use of the LEGO Touch sensor and LEDs. Whenever the robot
is powered on (that is when it is allowed to move) we are going to make the left LED blink to indicate that
the robot is up and running.

Create a new fizz file called heartbeat.fizz. In it, we will define the elemental responsible by turning the
left LED ON and OFF periodically:

1 ev3.bev.hbeat {

2
3 chatty = no,

4 replies.are.triggers = no,

5 power = 0,

6 toggle = 1

7

7
8 } {

9
10 () :- @ev3.tck.fast(_,_),

11 peek(power,1),

12 boo.not($ toggle,:toggle),

13 poke(toggle,:toggle),

14 #ev3.sys.led.0(poke,g(:toggle)),

15 hush;

16
17
18 () :- @ev3.bev.state(hint,power(off)), poke(power,0), #ev3.sys.led.0(poke,g(0));

19 () :- @ev3.bev.state(hint,power(on)), poke(power,1), #ev3.sys.led.0(poke,g(1));

20
21 }

The file defines three trigger based prototypes. The first one (in line 10) will toggle the LED ON and
OFF by querying the elemental ev3.sys.led.0 with the requiered brightness value. The trigger predicate

(ev3.tck.fast) references an elemental that we will add shortly. On line 11, we look at the value of the
power property which will be a local cache of the power state of the robot. The prototypes on line 18
and 19 will change the value of the property on reaction to trigger statements coming from the yet to be
defined elemental ev3.bev.state. This elemental will keep track of the power state of the robot. When
that is changed, for example when the user presses the Touch sensor, the elemental will publish a statement

(either ev3.bev.state(hint,power(off)) or ev3.bev.state(hint,power(on))) which will then trigger
ev3.bev.hbeat. The property power will then get set and the LED will get turned either ON or OFF. Line
12 and 13 shows the logic used to toggle the brightness value between 0 and 1 at each periodic trigger coming
from ev3.tck.fast.

Just in case you are wondering what is that hush primitive we called on line 15 (you will see it used later on
as well), know that it is only an optional performance improvement. The primitive will suppress the publi-
cation of a ev3.bev.hbeat statement on successful conclusion of the inference, saving a bit of the runtime
resources, which matters on a processing power limited board like the EV3.

Let’s now define ev3.tck.fast in a new file called ticks.fizz:

1 ev3.tck.fast {

2 class = FZZCTicker,

3 tick = 0.5,

4 tick.on.attach = yes

5 } {}

It is defined as an elemental of class FZZCTicker, and will publish a statement (of arity two) at a given pace
which we will set to 0.5 (seconds). We also indicate (with the tick.on.attach property) that we want the
elemental to publish a statement when it is added to the substrate rather than wait for the first time tick.

Next, let’s define the ev3.bev.state elemental in a separate file called behaviors.fizz:

1 ev3.bev.state {

2
3 power = off

4
5 } {

6
7 (peek,power(:state))^ :- peek(power,:state);

8 (poke,power(:state))^ :- poke(power,:state), declare($ self,[hint,power(:state)]);

9
10 () :- @ev3.sen.touch(hint,pressed(1)), peek(power,on)^, ~self(poke,power(off)), hush;

11 () :- @ev3.sen.touch(hint,pressed(1)), peek(power,off), ~self(poke,power(on)), hush;

12
13 }

8

As we have seen earlier, the core purpose of this elemental is to keep track of when the robot is allowed to
move. Changing this state can be done via a query to the elemental or by pressing the Touch sensor. On
line 7, we define a prototype which when matched with a predicate will read the value of the power property.
On line 8, we define the prototype for when the value of the property power is to be set. When this prototype
gets executed, it will complete with the declare primitive which will publish a new statement constructed
from the terms passed to it. $self is a constant which unifies to the label of the elemental in which it is
used. This published statement is the one we set up a trigger predicate for in ev3.bev.hbeat. On line 10
and 11, we define the two trigger based prototypes which will react to a press event on the Touch sensor
(when the sensor is pressed down, the functor that is the second term of the published statement will unify
to pressed(1). When depressed, it will be pressed(0)).

Once we add the three new files to our solution, we’ll be ready to test the transition of the power state for
the robot:

1 {

2 "solution" : {

3 "modules" : ["modEV3"],

4 "sources" : ["system.fizz","sensors.fizz","motors.fizz","ticks.fizz","heartbeat.fizz","behaviors.fizz"],

5 "globals" : []

6 }

7 }

As we did before, we will use the spy command to observe the state transition as well as the Touch sensor
presses:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.081s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.188s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.564s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.424s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.097s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.387s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.115s
load : loading completed in 3.233s
?- /spy(append,ev3.sen.touch)
spy : observing ev3.sen.touch
?- /spy(append,ev3.bev.state)
spy : observing ev3.bev.state
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.bev.state() := 0.00 (14.980050)
spy : S ev3.bev.state(hint, power(on)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.bev.state(hint, power(off)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)

9

Setting-up a Cluster

The native way for multiple instances of fizz running on separate hosts to collaborate is to use the CLU

module. In this case, we want the robot and a main computer to be connected so that we can not only
expand the computing abilities of the robot by using external resources, but also to be able to observe the
execution of the solution on the robot.

Hooking this up in fizz is fairly simple (don’t let the number of properties scare you). Create a new file called
network.fizz. We will define the CLU provided elemental that creates the bridge between our two remote
instances of fizz :

1 ev3.sys.network {

2
3 class = FZZCCLUGateway,

4
5 filters = [

6 ev3.sys,

7 ev3.act.motor.t, ev3.act.motor.l, ev3.act.motor.r,

8 ev3.sen.color, ev3.sen.sonic, ev3.sen.gyros,

9 ev3.bev.state

10],

11
12 MCAddress = "233.252.1.32",

13 CLUDPPort = 49152,

14 TXUDPPort = 49153,

15
16 Bandwidth.value = 12500,

17 Bandwidth.peers = 2,

18 Bandwidth.limit = 95,

19
20 CLCadence = 350,

21 CLTimeout = 750,

22 XXTimeout = 25,

23 TXTimeout = 500,

24 SyCadence = 1000,

25 TXCadence = 3,

26 PkBLength = 1472,

27 PkRetries = 10,

28 PkWinSize = 10,

29 RXCadence = 3

30
31 }

The properties that will most matters to you are filters and Bandwidth.value. The rest are out of the
scope of this article. For more details, check out the fizz user manual. Because the amount of inferences
on a substrate can be large, the filters property allows to specify which can send (and receive) to/from
the other fizz instances that are in the cluster (which, by the way, is identified by the multicast address
provided with the property MCAddress). If the label of a predicate or statement isn’t in this list, it will not
be transmitted or received. As for Bandwidth.value, it is the bandwidth available for the cluster (in bytes
per ms). Depending on your networking setup and quality (router, USB WiFi dongle ...) you may have to
adjust the value if you notice long delays when doing inferences that reach out onto the cluster.

Let’s give this a try now. First, we need to modify our solution to load the CLU module and the new file we
just created:

1 {

2 "solution" : {

3 "modules" : ["modEV3","modCLU"],

4 "sources" : ["system.fizz","sensors.fizz","motors.fizz","ticks.fizz","heartbeat.fizz",

5 "behaviors.fizz","network.fizz"],

6 "globals" : []

7 }

8 }

10

We also need to create a new solution file for the fizz instance we are going to run on a desktop (or laptop).
Let’s call this file host.json. All we need on the computer to do for now is to load the same module CLU as
well as network.fizz:

1 {

2 "solution" : {

3 "modules" : ["modCLU"],

4 "sources" : ["network.fizz"],

5 "globals" : []

6 }

7 }

Let’s give this a try, first by running fizz on the EV3:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.080s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.031s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.186s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.572s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.453s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.090s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.391s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.130s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.382s
load : loading completed in 3.839s

We will then launch the instance on the computer and query the Ultrasonic sensor from it:

jlv@arrakis:~/Code/okb/apps/fizz$./fizz.x64 ./etc/ev3/host.json
fizz 0.6.0-X (20190601.2228) [lnx.x64|8|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/host.json ...
load : loaded ./mod/lnx/x64/modCLU.so in 0.000s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.003s
load : loading completed in 0.004s
?- #ev3.sen.sonic(peek,value(:v))
-> (2.550000) := 1.00 (0.182) 1

Drive behavior

Now that we have all the basic components in place, let’s add a more advanced component to our robot;
one that combines sensors and motors to perform tank steering type mobility. While this is something that
could be implemented directly in fizz , for performance reasons, the EV3 module provides an elemental class
(EV3CBEVDrive) for that single purpose. We are going to make use of it.

11

The elemental ties up two motors and a Gyroscope sensor to provide an easy way to ask the robot to turn
in any direction and drive or alter its course while driving. It also implements a very basic odometry system
which can be used to know the rough estimated position of the robot. This can be controlled at runtime via
a set of specific queries.

Re-open the behaviors.fizz file we created earlier, and copy into it the following definition:

1 ev3.bev.drive {

2
3 class = EV3CBEVDrive,

4
5 ticks = 150, // control loop frequency (in ms)

6 hints = 3, // how often to publish a hint when running a program (modulo)

7
8 gyros = ev3.sen.gyros, // label of the gyros sensor

9 motor.l = ev3.act.motor.l, // label of the left motor

10 motor.r = ev3.act.motor.r, // label of the right motor

11
12 odometry = { // odometry characteristics

13 wheel.c = 0.176, // circumference of the wheel (in m)

14 motor.d = 0.12 // measured distance in between the center of the motors (in m)

15 },

16
17 move = { // ’move’ program setup

18 speed = 270, // speed to be applied to the motors at full power level

19 pid.Kp = 3.5, // PID’s proportional constant

20 pid.Kd = 0.5, // PID’s derivative constant

21 pid.Ki = 0 // PID’s integral constant

22 },

23
24 turn = {

25 speed = 235, // speed to be applied to the motors at full power level

26 pid.Kp = 3.5, // PID’s proportional constant

27 pid.Kd = 0.5, // PID’s derivative constant

28 pid.Ki = 0 // PID’s integral constant

29 }

30
31 } {}

For more details on the working of this elemental and the meaning of some of its properties, check out the
fizz user manual. I did leave comments on each line for the curious readers. For now, though, we are only
going to focus on the properties that are more likely to be changed to adapt to the robot that you have
assembled; that is the value specified in the frame assigned to the odometry property. Take out a ruler and
mesure the circumference of the wheel attached to the two motors as well as the distance in between the
center of the two motors. Convert both values in meters and update the value for wheel.c and motor.d.
Both values are crucial for the odometry estimation.

If you named the gyroscope sensor or the motors elementals differently, you will need to reflect that change
to the properties gyros, motor.l and motor.r.

Here are examples of the predicates to which the elemental will answer to that can be used to make the robot
move:

#ev3.bev.drive(poke,heading(30)) set target heading
#ev3.bev.drive(poke,pwlevel(0.5)) set power level
#ev3.bev.drive(peek,position(:l)) get the estimated position of the robot (using odometry)
#ev3.bev.drive(poke,position([0,0])) set the estimated position of the robot (using odometry)
#ev3.bev.drive(call,move) move towards the target heading
#ev3.bev.drive(call,turn.to(45)) stay put but rotate to face the target heading (45 degrees)
#ev3.bev.drive(call,turn.by(-25)) stay put but rotate to face an offset from the current heading
#ev3.bev.drive(halt) stop, don’t move nor rotate

When the elemental is executing one of the called functions (move, turn.to or turn.by), it will frequently
publish a statement to indicate the status of the function. Using it as a trigger predicate allows another

12

elemental to react to it, for instance, to execute an action after the robot has turned toward a given direction.

Since we have simply added the elemental to an existing fizz file we do not have to modify our solution file.
In the example that follows, we will get the robot moving forward, and then stop it:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.147s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.071s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.314s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.935s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.446s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.102s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.406s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.285s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.750s
load : loading completed in 5.156s
?- /spy(append,ev3.bev.state)
spy : observing ev3.bev.state
?- /spy(append,ev3.bev.drive)
spy : observing ev3.bev.drive
?- #ev3.bev.drive(poke,pwlevel(0.5))
spy : Q #ev3.bev.drive(poke, pwlevel(0.500000)) (14.994295)
spy : R ev3.bev.drive(poke, pwlevel(0.500000)) (14.975756)
-> () := 1.00 (0.071) 1
?-
spy : S ev3.bev.state() := 0.00 (14.978130)
spy : S ev3.bev.state(hint, power(on)) (15.000000)
?- #ev3.bev.drive(call,move)
spy : Q #ev3.bev.drive(call, move) (14.992318)
spy : R ev3.bev.drive(call, move) (14.965857)
-> () := 1.00 (0.067) 1
spy : S ev3.bev.drive(hint, move(0, [0.016133, 0], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.045956, 0], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.075288, 0.000158], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.104621, 0.000158], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.134929, 0.000503], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.164005, 0.001339], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.193565, 0.002372], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.223124, 0.003404], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.252938, 0.004091], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.281533, 0.004590], -1)) (15.000000)
spy : T ev3.bev.state
spy : S ev3.bev.drive(hint, move(2, [0.311838, 0.005187], -2)) (15.000000)
?- #ev3.bev.drive(halt,move)
spy : S ev3.bev.drive(hint, move(2, [0.340909, 0.006202], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.370225, 0.007226], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.400273, 0.008275], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.428611, 0.009265], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.458180, 0.009947], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.487994, 0.010613], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.517554, 0.011645], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.547118, 0.012503], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.575958, 0.013006], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.605779, 0.013185], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.634376, 0.013522], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.665173, 0.013876], -1)) (15.000000)
spy : Q #ev3.bev.drive(halt, move) (14.983712)
spy : S ev3.bev.drive(hint, move(1, [0.695479, 0.014405], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.695479, 0.014405])) (15.000000)
spy : R ev3.bev.drive(halt, move) (14.952221)

13

-> () := 1.00 (0.127) 1

Sonar behavior

The second more advanced component we are now going to add is a sonar which, given an ultrasonic sensor
mounted on a motor, can be used to get a sense of what is around our robot. For performance reasons, the
CLU module provides an elemental class (EV3CBEVSonar) that implements this.

Re-open once more the behaviors.fizz file and copy into it the definition that follow. Here again, refer to
the fizz user manual for explanations on the properties beyond the comments left in the code:

1 ev3.bev.sonar {

2
3 class = EV3CBEVSonar,

4 chatty = yes,

5
6 gyros = ev3.sen.gyros, // label of the gyros sensor (optional)

7 sonic = ev3.sen.sonic, // label of the sonic sensor

8 motor = ev3.act.motor.t, // label of the motor

9 drive = ev3.bev.drive, // label of the drive behavior (optional)

10
11 scan.mtime = 250, // how often to check if the motor has reached the target position (in ms)

12 scan.itime = 50, // how long after a step before reading the sonic sensor (in ms)

13 scan.speed = 270, // speed of the motor to be applied in scan mode

14 skim.mtime = 250, // how often to read from the sensor while the motor is turning in skim mode (in ms)

15 skim.speed = 80 // speed of the motor to be applied in skim mode

16
17 } {}

As you can see, the elemental ties up four of the elementals we have defined so far. For the scope of this
article, we are not going to dive into each of the properties. Here again, if you have used different names
for the elementals we have created in this article, you will need to update the values of the gyros, sonic,
motor and drive properties.

Just like the previous elemental we have added, this one will answer to predicates. Here are some examples:

#ev3.bev.sonar(call,scan([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 different
relative orientations.

#ev3.bev.sonar(call,scan.max([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 different
relative orientations, and provides the direction
in which the distance is the largest

#ev3.bev.sonar(call,scan.min([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 different
relative orientations, and provides the direction
in which the distance is the smallest

#ev3.bev.sonar(call,skim([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations.

#ev3.bev.sonar(call,skim.max([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations and
provides the direction in which the distance is
the largest.

#ev3.bev.sonar(call,skim.min([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations and
provides the direction in which the distance is
the smallest.

#ev3.bev.sonar(halt) halt any scanning and returns to the relative
orientation of 0.

When the elemental has completed executing one of the called functions, it will publish a statement that
will contain the result. Using it as a trigger predicate allows another elemental to react to it, for instance,

14

to turn the robot into the direction with the clearest path.

Since we have simply added the elemental to an existing fizz file we can here again try without having to
modify our solution file:

?- /spy(append,ev3.bev.sonar)
spy : observing ev3.bev.sonar
?- #ev3.bev.sonar(call,scan([-90,-45,0,45,90]))
spy : Q #ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (14.992524)
spy : R ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (14.952157)
-> () := 1.00 (0.117) 1
spy : S ev3.bev.sonar(hint, scan(1560136694.709000, [[-88, 2.001000, [0.695479, 0.014405]], [-44, 2.550000, [0.695479,

0.014405]], [1, 2.335000, [0.695479, 0.014405]], [43, 0.864000, [0.695479, 0.014405]], [88, 0.786000, [0.695479,
0.014405]]])) (15.000000)

?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90]))
spy : Q #ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.992260)
spy : R ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.974081)
-> () := 1.00 (0.071) 1
spy : S ev3.bev.sonar(hint, scan.max(1560136711.072965, [[-88, 1.989000, [0.695479, 0.014405]], [-44, 2.550000, [0.695479,

0.014405]], [-1, 2.550000, [0.695479, 0.014405]], [43, 0.864000, [0.695479, 0.014405]], [88, 0.786000, [0.695479,
0.014405]]], [-44, 2.550000, [0.695479, 0.014405]])) (15.000000)

Each hint statement the elemental publishes will contains the list of readings. Each reading will itself be a list
containing the absolute orientation at which the reading was taken, and followed by the measured distance
(in meters). The third term will be the position of the robot at the time of the reading, as estimated by
the odometry. In the case of the scan.max function, the statement will contain a third term that will be a
copy of the reading with the largest distance. If the function was scan.min, it will be the reading with the
smallest distance.

Sensing behavior

The third and last advanced component we are now going to add is a sensing one which will combine readings
from sensors and motors into a single time-stamped statement that will get published with a given frequency.
Here again, for performance reasons the CLU module provides that elemental as a class (EV3CBEVSense).

Re-open once more the behaviors.fizz file and copy into it the definition that follows:

1 ev3.bev.sense {

2
3 class = EV3CBEVSense,

4 ticks = 250,

5 terms = [

6 [ev3.sen.color,value],

7 [ev3.sen.sonic,value],

8 [ev3.act.motor.t,position],

9 [ev3.sen.gyros,value],

10 [ev3.bev.drive,position]

11],

12 mode = auto

13
14 } {}

The property terms is the list of all the sensors or motors that we wish to include in the statement. After
the label of the elemental to be queried, the name of the property to be fetched is expected. Each of the
elementals is expected to answer to peek predicate such as #ev3.sen.gyros(peek,value(:v)). The order
in which the elementals are presented in the list will define the order in which their values will show-up
in the statements second term. The ticks property indicates how often (in ms) we want the referenced
elementals to be queried in the automatic mode. Which is the mode in which we will be using the elemental

for this robot. Note, that a statement will only be published if at least one of the values coming from the
sensors or motors have changed.

15

Let’s try this out:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.183s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.524s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.454s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.125s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.451s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 0.993s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.420s
load : loading completed in 3.820s
?- /spy(append,ev3.bev.sense)
spy : observing ev3.bev.sense
spy : S ev3.bev.sense(hint, scan(1560138582.684444, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138582.930861, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.430375, [0, 1.766000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.680716, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.930339, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138584.680668, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138584.929949, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.184008, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.430722, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.930447, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.180119, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.680684, [0, 1.767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.930651, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138587.180854, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138588.180581, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138588.430206, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90]))
spy : S ev3.bev.sense(hint, scan(1560138593.181025, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138593.434390, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
-> () := 1.00 (0.057) 1
spy : S ev3.bev.sense(hint, scan(1560138593.680864, [0, 1.679000, -28, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138593.930725, [0, 0.429000, -92, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.180544, [0, 0.464000, -70, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.430978, [0, 1.787000, -28, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.684519, [0, 1.754000, 11, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.931040, [0, 0.863000, 43, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.191754, [0, 0.856000, 52, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.430757, [0, 0.780000, 88, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.684543, [0, 0.780000, 71, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.930399, [0, 2.372000, 7, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.180940, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.429753, [0, 1.767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.679725, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.930038, [0, 1.767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138597.179934, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.430492, [0, 1.763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.680638, [0, 1.764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.930253, [0, 1.762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138599.180388, [0, 1.767000, 0, 0, [0, 0]])) (15.000000)

Note, how how the second and third terms in the list change after a scan is requested from the sonar.

Before moving on to the last section of this article, we need to go back to the network.fizz file and add
the last few elementals we have created to the filter list so that they can be accessible from a remote

16

computer:

1 filters = [

2 ev3.sys,

3 ev3.act.motor.t, ev3.act.motor.l, ev3.act.motor.r,

4 ev3.sen.color, ev3.sen.sonic, ev3.sen.gyros,

5 ev3.bev.state, ev3.bev.sense, ev3.bev.sonar, ev3.bev.drive

6],

Autonomous exploring

Now that we have all the components in place, we are ready to combine them all to make our robot au-
tonomously wander around in a space. I have used the term behavior earlier to categorize some of the
elementals we are using. In the case of the elemental we are building in this section, I will be using the term
instinct as it has a higher level of complexity and it is built on top of behaviors.

The simple procedure that the robot will be following is going to be the following:

1. Use the sonar to find a direction in which to head (the one where the reading is the largest distance)

2. Turn (in-place) to face the direction

3. Move (in that direction)

4. If an obstacle is detected with the sonar in about the direction the robot is heading, stop and go to 1

5. If an obstacle is detected with the Color sensor, stop and go to 1

The robot will also respect its power state as we have setup earlier. When the state is set to off, we will
have the robot stop as soon as possible if it is moving or turning.

To start, create a new fizz file called instincts.fizz and copy into it the following definition for our new
elemental:

1 ev3.ins.xplorer {

2
3 chatty = no,

4 replies.are.triggers = no,

5
6 } {}

The chatty and replies.are.triggers properties we have set are only needed here due to the perfor-
mances constraints of the EV3. They basically ensure that the amount of unnecessary inferences will be
kept to the strict minimum.

Let’s now modify our solution file to include the new fizz file:

1 {

2 "solution" : {

3 "modules" : ["modEV3","modCLU"],

4 "sources" : ["system.fizz","sensors.fizz","motors.fizz","ticks.fizz","heartbeat.fizz",

5 "behaviors.fizz","network.fizz","instincts.fizz"],

6 "globals" : []

7 }

8 }

From the procedure we have written down earlier, we can see that there are four different active states the
robot can be in: idle, moving, turning and picking where to head next. To keep track of what state we’re

17

in, we are going to add a property to the elemental calling it state. The symbols we will use to represent
each of the states we have listed above are: null, move, turn and pick.

We are also going to define two properties (wide.scan and wide.scan2) to provide the list of relative angles
we wish the sonar to mesure when picking a new direction to head out to. The second list will be using when
its the Color sensor that triggered a stop. When this occurs, we can’t possibly continue moving forward and
thus we won’t consider that direction when scanning.

When the robot is moving, we are going to use the sonar to scan ahead of the robot. But instead of a wide
scanning, we will perform a much more narrow scan. To tune this up, we are going to use the property
skim.scan to provide the list of relative angles to be scanned. We’ll also repeat the scan while the robot
is moving with a set time interval between consecutive scans. The property skim.delay will provide that
value (in milliseconds).

Lastly, we’ll use the properties turn.speed and move.speed to scale the speed value of the motors. We
will also define the proximity property to provide the minimum distance (in meters) at which an obstacle
becomes an obstacle to be avoided.

We can now update the definition of our elemental as follow:

1 ev3.ins.xplorer {

2
3 chatty = no,

4 replies.are.triggers = no,

5
6 state = null,

7 wide.scan = [-135,-90,-45,0,45,90,135],

8 wide.scan2 = [-135,-90,-45,45,-90,135],

9 proximity = 0.5,

10 turn.speed = 0.8,

11 move.speed = 0.35,

12 skim.delay = 750,

13 skim.scan = [0,-5,5]

14
15 } {}

The main way to interface with the elemental is going to be via a call to a function we will call go. Here’s
the definition of the two prototypes that will support calling and halting the function:

1 (call,go)^ :- peek(state,null),

2 #ev3.bev.state(peek,power(on)),

3 ~self(step,pick($ wide.scan));

4
5 (halt,go)^ :- peek(state,_?[neq(null)]),

6 ~self(step,null);

When a request to get the function started is made (the predicate unifies with the prototype’s entrypoint)
on line 1, we first verify that the current state is null (e.g. we are not already executing the function)
using the peek primitive. We then validate that the robot is currently powered ON by making a query to
ev3.bev.state (on line 2). If the Touch sensor we are using as a power button hasn’t been pressed, the
query will fail which mean the inference will fail and we won’t get to line 3. If the robot is powered, we will
query the elemental itself to execute the first of the steps we described earlier (pick) using the wide.scan

property we set recently. The second prototype (on line 5) handles the request to stop the go function. It
first ensures that the current state of the elemental is not null then queries itself to get the internal state
of the elemental to switch to null.

Before we move onto the actual implementation of each of the states, it is worth noting that fizz (at the time
of this writing) doesn’t support preventing some prototype from being queried by another elemental. Thus,

18

it is possible to query directly the prototypes (which we will consider to be private) that we are about to add
without going thru the the one we have setup and consider to be public.

Now, the pick state’s purpose, as we have seen earlier, is to use the sonar to find a direction to head towards
when the robot is stationary. We are going to implement this with the following prototype:

1 (step,pick(:s))^ :- console.puts(step.pick(:s)),

2 peek(state,_?[neq(pick)]),

3 poke(state,pick),

4 #ev3.bev.sonar(call,scan.max(:s));

Once the query gets matched with the entrypoint of the prototype and the variable s gets assigned with the
list of relative angles we want to scan for obstacles, we then use the primitive console.puts to print on the
console some tracing information. We then ensure that the current state of the elemental is not the one we
are trying to set. Once this is done, the inference will move to (line 3) setting the state of the elemental to
pick before calling the scan.max function of the sonar behavior with the requested list of angles (s).

As we discussed before, the query to ev3.bev.sonar will be answered as soon as the requested function
starts. For the elemental to be made aware of the result of the sonar scan, we are going to use a trigger
based prototype. In fact, we are going to have to add two prototypes as there is two possible outcomes of the
scan: the furthest obstacle is further away than the proximity value we have setup in the properties or it
is closer.

Here is the definition of the prototype that will handle the first case:

1 () :- @ev3.bev.sonar(hint,scan.max(_,_,[:h,:d,_])),

2 peek(state,pick),

3 gt(:d,$ proximity)^,

4 ~self(step,turn.to(:h)),

5 hush;

On line 1, we will get the heading (which is the absolute heading, not the relative heading) (variable h)
and distance (variable d) by unification of the statement published by ev3.bev.sonar with our predicate.
We then check that we are (still) in the pick state before (in line 3) using the primitive gt to ensure that
the distance is greater than the value of the proximity property. Because we are going to have more than
a single prototype getting activated by the same statement, we postfix the primitive call by the cut sym-
bol. This will ensure that if the inference goes beyond that point, none of the other concurrent inferences
triggered by the same statement will continue (or execute at all). If the distance detected by the sonar satis-
fies the constraint, we query the elemental itself to execute the next step (turn.to) which we will define later.

When the robot ends-up in a place where every possible direction is closer than what we feel comfortable
getting close too, we will get the robot to turn around and face a random direction:

1 () :- @ev3.bev.sonar(hint,scan.max(_,_,[:h,_,_])),

2 peek(state,pick),

3 rnd.sint(1,:v,-10,+10), add(180,:v,:a),

4 #add.angle(:h,:a,:nh),

5 ~self(step,turn.to(:nh)),

6 hush;

This is accomplished on line 3 by picking a random number between -10 and 10 (using the primitive

rnd.sint) and then adding it to 180 (primitive add) before using it as argument to the step we wish the
elemental to execute now (line 5). As angles provided by the gyroscope sensor are expressed in degrees from
-180 to 180, we need to insure that the heading we want our robot to turn to is compatible, thus we query
the procedural knowledge add.angle defined below before passing the result to the turn.to step:

19

1 add.angle {

2
3 (:a,:b,:c) :- add(:a,:b,:ab), ~fix.angle(:ab,:c);

4 }

5
6 fix.angle {

7
8 (:a?[<0|180>],:a)^ :- true;

9 (:a?[<-180|0>],:a)^ :- true;

10 (:a?[lt(0)],:b)^ :- mod(:a,360,:a2), add(360,:a2,:b);

11 (:a?[gt(180)],:b)^ :- mod(:a,360,:a2), sub(:a2,360,:b);

12
13 }

The procedural knowledge we defined here is pretty straightforward: add.angle first numerically add the two
angle values, then query fix.angle to ensure that the sum of the angles stays between the expected bounds.
This is implemented by having the elemental fix.angle pick up the right prototype during the unification
of the prototypes’ entrypoint. Note the use of variable’s constraints (e.g. :a?[<0|180>]) to minimize the
runtime cost of each prototype by making any constraint part of the unification.

Let’s now look at how we would implement the prototype dealing with turning the robot towards a given
(absolute) heading:

1 (step,turn.to(:h))^ :- console.puts(step.turn.to(:h)),

2 peek(state,pick),

3 poke(state,turn.to),

4 ~self(exec,turn.to(:h));

Simarly to the previous related prototype, we start with a tracing the inference then check that the current
state of the elemental is indeed pick, before changing it to turn.to with the primitive poke. The prototype
concludes with a query that will execute the turn which we will define as follows:

1 (exec,turn.to(:h))^ :- console.puts(exec(turn.to(:h))),

2 #ev3.bev.drive(poke,[pwlevel($ turn.speed)]),

3 #ev3.bev.drive(call,turn.to(:h));

Lines 2 and 3 query the elemental ev3.bev.drive to first set the power level to our turn.speed property
before calling the turn.to function. As for the sonar function call we made when scanning for a place
to head towards, the query will complete as soon as the robot starts to move. To know when the turn is
complete, so that we can start moving forward, we are going to use another trigger prototype:

1 () :- @ev3.bev.drive(hint,turn.to(:a)),

2 peek(state,turn.to),

3 mao.abs(:a,:a.abs?[lte(1)]),

4 ~self(step,move),

5 hush;

Unlike the sonar elemental, the drive elemental will publish ev3.bev.drive statements frequently while
executing the turn.to function. For each such statement, the term in the functor turn.to will be the
difference between the current heading and the target heading. We will use the primitive mao.abs on line 3
to ensure that the inference triggered by the statement only continues past that predicate when that value is
less or equal to 1 degree. When the robot has turned towards the desired heading, the elemental will query
itself to change its state to move. We will define the prototype for that as follow:

1 (step,move)^ :- console.puts(step.move),

2 peek(state,_?[neq(move)]),

3 poke(state,move),

20

4 ~self(exec,move),

5 #ev3.bev.sonar(call,scan.min($ skim.scan,$ skim.delay));

Here again, the prototype outputs some trace to the console before changing the state property to move only
if it isn’t already the current state. The inference then continues by querying the elemental to get the robot
moving before querying ev3.bev.sonar to execute the scan.min function. Unlike the other times we have
called a function from the sonar, the predicate this time provides, as second term, a delay (in miliseconds)
we want the function to be repeated at. As long as the robot is moving, we want the sonar to continue
performing a narrow scanning of what is ahead of the robot. Providing that optional term to the function
will ensure that the elemental keeps executing the function every so often without having to explicitly call
the function over and over.

Let’s now have a quick look at the definition of the move prototype. No surprise here, lines 2 and 3 query the
elemental ev3.bev.drive to first set the power level to our move.speed property before calling the move

function:

1 (exec,move)^ :- console.puts(exec(move)),

2 #ev3.bev.drive(poke,pwlevel($ move.speed)),

3 #ev3.bev.drive(call,move);

While the robot is moving, we need to inspect the result of the scan.min function we have requested the
sonar to be executing. When the value is below the proximity property we have set, we will want the
robot to stop immediately and try to pick a new direction to head towards. If the distance is greater than
proximity, we will just output a trace on the console. The two following prototypes define these:

1 () :- @ev3.bev.sonar(hint,scan.min(_,_,[:h,:d,_])),

2 peek(state,move),

3 lte(:d,$ proximity)^,

4 console.puts("proximity ",sonar(:d),"!"),

5 ~self(step,stop),

6 hush;

7
8 () :- @ev3.bev.sonar(hint,scan.min(_,_,[:h,:d,_])),

9 peek(state,move),

10 gt(:d,$ proximity)^,

11 console.puts("proximity ",sonar(:d)),

12 hush;

The prototype that will handle the query to change the state to stop is defined as follow:

1 (step,stop)^ :- console.puts(step.stop),

2 poke(state,null),

3 ~self(exec,stop),

4 ~self(step,pick($ wide.scan));

It sets the state to null on line 2, before executing the actual stop. Then, it queries the elemental itself to
get the robot to pick a new direction. The prototype executing the stop is also pretty straightforward. It
requests both the drive amd sonar behaviors to stop the execution of the functions they are running. In the
case of ev3.bev.drive, this will cause the robot motion to stop:

1 (exec,stop)^ :- console.puts(exec(stop)),

2 #ev3.bev.drive(halt),

3 #ev3.bev.sonar(halt);

There are two more trigger prototypes we need to add to have a complete autonomous system. The first one
will deal with the reading from the Color sensor. As you may recall, the value we read from the sensor is

21

provided as one of the terms in the scan functor of the statements that are published by the ev3.bev.sense.
Knowing that the value will jump from 0 to anything less than 1 when the sensor is a few centimeters aways
from a surface, we can write it as follow:

1 () :- @ev3.bev.sense(hint,scan(_,[:c?[gt(0)]|_])),

2 peek(state,move), console.puts("proximity alert! ",color(:c)),

3 ~self(step,stop.c),

4 hush;

Here also, we use a variable constraint to express that the trigger predicate should only unify when the value
from the Color sensor is greater than 0. If this happens when the robot is moving (the state of the elemental

will be move), we will output a trace message on the console then query the elemental itself. The prototype

for that will be setting the state property to null then executing a stop before moving back to the pick

step. Note that since this stop was originated by the Color sensor that is facing forward, we will look for a
new direction skipping the forward direction (by using the list in wide.scan2):

1 (step,stop.c)^ :- console.puts(step.stop.c),

2 poke(state,null),

3 ~self(exec,stop),

4 ~self(step,pick($ wide.scan2));

The second, and last trigger based prototype we need to add is one handling the robot’s power being changed
to OFF. Since, the elemental ev3.bev.state will publish a hint statement when this occurs, we use it as a
trigger predicate to set the internal state of the elemental to null:

1 () :- @ev3.bev.state(hint,power(off)),

2 peek(state,_?[neq(null)]),

3 ~self(step,null),

4 hush;

The (step,null) self query reference the following prototype, which by now should be straightforward to
follow:

1 (step,null)^ :- console.puts(step.null),

2 poke(state,null),

3 ~self(exec,stop);

Once you have added the last prototype to the definition of ev3.ins.xplorer, we are ready to give this a try
by running it on a computer with the EV3 Intelligent brick will be running the rest. First, copy host.json

into a new file called host+instincts.json and add the instincts.fizz to it:

1 {

2 "solution" : {

3 "modules" : ["modCLU"],

4 "sources" : ["network.fizz","instincts.fizz"],

5 "globals" : []

6 }

7 }

We can then start fizz on the EV3 like we did earlier:

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

22

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.183s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.524s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.454s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.125s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.451s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 0.993s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.420s
load : loading completed in 3.820s

and then run an instance on a PC on the same network. Once the robot’s is powered by the pressing the
Touch sensor, we can query ev3.ins.ezplorer and get the robot moving around:

jlv@akkala:~/Code/okb/apps/fizz$./fizz.x64 ./etc/experiments/ev3/article/host+instincts.json
fizz 0.6.0-X (20190601.2228) [lnx.x64|8|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ev3/article/host+instincts.json ...
load : loaded ./mod/lnx/x64/modCLU.so in 0.000s
load : loading ./etc/experiments/ev3/article/network.fizz ...
load : loading ./etc/experiments/ev3/article/instincts.fizz ...
load : loaded ./etc/experiments/ev3/article/network.fizz in 0.002s
load : loaded ./etc/experiments/ev3/article/instincts.fizz in 0.018s
load : loading completed in 0.019s
?- #ev3.ins.xplorer(call,go)
step.pick([-135, -90, -45, 0, 45, 90, 135])
-> () := 1.00 (0.331) 1
step.turn.to(-45)
exec(turn.to(-45))
step.move
exec(move)
proximity sonar(2.550000)
proximity sonar(2.550000)
proximity sonar(2.314000)
proximity sonar(2.261000)
proximity sonar(2.155000)
proximity sonar(2.116000)
proximity sonar(2.072000)
proximity sonar(1.969000)
proximity sonar(1.511000)
proximity sonar(0.864000)
proximity sonar(0.887000)
proximity sonar(0.962000)
proximity sonar(0.879000)
proximity sonar(0.580000)
proximity sonar(1.404000)
proximity sonar(0.380000)!
step.stop
exec(stop)
step.pick([-135, -90, -45, 0, 45, 90, 135])
step.turn.to(-2)
exec(turn.to(-2))

If we wanted to run the whole thing on the EV3, we’ll just have to copy the robot.json file into robot+instincts.json
and add instincts.fizz to the list of knowledge to be loaded. Then query ev3.ins.ezplorer on the EV3

instance of fizz :

robot@ev3dev:~/fizz.0.6.0-X$./fizz.ev3 ./etc/ev3/robot+instincts.json

23

fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot+instincts.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.185s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.578s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.448s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.098s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.391s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.002s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.387s
load : loading ./etc/ev3/instincts.fizz ...
load : loaded ./etc/ev3/instincts.fizz in 3.261s
load : loading completed in 7.174s
?- #ev3.ins.xplorer(call,go)
step.pick([-135, -90, -45, 0, 45, 90, 135])
-> () := 1.00 (0.202) 1
step.turn.to(-89)
exec(turn.to(-89))
step.move
exec(move)
proximity sonar(2.123000)
proximity sonar(0.370000)!
step.stop
exec(stop)
step.pick([-135, -90, -45, 0, 45, 90, 135])
step.turn.to(-133)
exec(turn.to(-133))
step.move
exec(move)
proximity sonar(1.227000)
proximity sonar(1.160000)
proximity alert! color(0.010000)
step.stop.c
exec(stop)
step.pick([-135, -90, -45, 45, -90, 135])
step.turn.to(2)
exec(turn.to(2))
step.move
exec(move)

Going further

The example discussed in this document, can serve as the starting point for further exciting experimentations
which are outside of the scope of this article. For instance, using odometry and the outputs from the sonar

it would be possible to create a symbolic map of the space in which the robot is roaming. With that map
and some pathfinding procedural knowledge, the robot could be made to head towards particular places on
the map.

Another exciting experiment is to turn the robot into a Conscious Turing Machine 6 (running the CTM on
a PC and not on the EV3 due to processing constraints) and observe if adaptability arises from it.

6http://f1zz.org/downloads/ctm.pdf

24

