
fizz

Jean-Louis Villecroze
jlv@f1zz.org @CocoaGeek

June 30, 2020 (Version 0.7.0-X)

Abstract

fizz is an experimental language and runtime environment for the exploration of cognitive architectures

and combined Machine Learning (ML) and Machine Reasoning (MR) solutions. It is based primarily
on symbolic programming and fuzzy formal logic, and it features a distributed, concurrent, asynchronous
and responsive inference engine.

Contents

1 About this document 2

2 Concepts & Syntax 2

2.1 Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Elemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Terms 9

3.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Regexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 Quirk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Console 19

4.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Adjusting the runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Primitives 37

5.1 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Comparaisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Boolean Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.10 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.11 Quirk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.12 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.13 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.14 Regexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.15 Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.16 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.17 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.18 Vector, Matrix and Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Elementals 100

7 Modules 110

8 Advanced topics 125

Index 139

1



1 About this document

This document is a user manual for fizz and assumes some basic familiarity with logic programming. It is
divided into the following parts:

Concepts & Syntax introduces the concepts and the syntax used to describe and manipulate knowledge

Console introduces the usage of the builtin console

Terms introduces the various types that can be manipulated
Primitives lists and describes all the primitives functions
Elementals lists and describes all the supported Classes of Elementals

Advanced topics describes more advanced topics including the Services

Release notes contains pertinent information for each subsequent releases

All code elements are presented in a distinct font like print("hello, world!"). Note that any tabulation
shown in a listing is only present to enhance the readability of the code. Tabulations are not part of the
language syntax. Primitives syntax is often a combination of code element and italic font. The part in italic
is always the input to the primitive. Primitives inputs use special symbols :

symbol? indicates that the input is optional
symbol|number indicates that the input can be either a symbol or a number

symbol+ indicates that the primitive can take on several symbols as input,
but at least one is required

symbol* indicates that the primitive can take on several symbols as input,
but one is optional

Many thanks to Joshua Nozzi (@JoshuaNozzi) and Keith Kolmos (@KeithMKolmos) for reviewing this
document and providing many insightful corrections and suggestions.

2 Concepts & Syntax

If you are familiar with PROLOG, you will find that fizz takes some of its fundamental elements and syntax
from it. There are five main concepts in fizz , which we will be discussing in this section:

Knowledge is a collection of related statements and/or prototypes.
Statement is a collection of terms with an assigned truth value (think fact).
Predicate is a labeled collection of terms with an assigned truth value range (or variable).
Prototype is a chained collection of predicates that can be evaluated (think rule).
Elemental is a runtime object which hold knowledge and can answer to query.
Service is a runtime object which provide a unique service within the runtime.

One of the main differences between PROLOG and fizz is how inference is done not by a single entity having
access to all facts and rules, but by the cooperation of a collection of objects each having access only to
what they must know (knowledges). Elemental objects in fizz are very much independent actors, which must
exchange messages (mostly by a queries and replies mechanism) in order to execute any inferences. While
this is far from being the most efficient method (and performance in some aspect is much worse for some
types of inferences) it allows for instance a statement that is broadcasted to trigger the execution of any
prototype that references it (via a predicate). It also supports inferences to be distributed among many cores
and/or many hosts.

2.1 Knowledge

A Knowledge groups a series of related Statements and Prototypes under the same logical concept (often
refered in this document as ”label”). For example, if we wanted to create a list of the three basic colors we
would define it as follows:

2



1 color {

2
3 (red,1.0,0.0,0.0);

4 (green,0.0,1.0,0.0);

5 (blue,0.0,0.0,1.0);

6
7 }

Knowledge definition always starts with a label that identifies the concept, followed by a frame (optional)
and a series of Statements and/or Prototypes within curly brackets. The frame (see Section 3.4 on page 13
for details on that term) specified after the symbol is known as the properties of the knowledge.

When a knowledge is used to define only statements, it is said to be factual knowledge. If it contains only
prototypes, it is called a procedural knowledge.

2.2 Statement

A Statement, as we have seen in the example above, is a comma-separated list of terms within parantheses
and terminated by a semicolon. We will look into all the supported terms in more details in Section 3 on
page 9, but so far we have used symbols and numbers. Each time a statement is defined, it can be assigned a
truth value (indicating the relation of the statement to truth). Let’s look at an example where each statement

is assigned a value to represent the likelihood of a given weather occurence in a particular city:

1 weather {

2
3 (paris,rain) := 0.8;

4 (seattle,sunny) := 0.2;

5 (london,fog) := 0.9;

6 (mawsynram,rain) := 1;

7 (honolulu,snow) := 0;

8 (honolulu,rain) := 0.1;

9 (honolulu,sunny) := 0.6;

10 (honolulu,cloudy) := 0.3;

11
12 }

It’s so unlikely that you will see snow in Honolulu, that we here state that such statement is false.

A truth value is always a number between 0 (false) and 1 (true). When no truth value is assigned, the default
value for a statement is 1. It is always defined last, prefixed with a :=. As part of a statement definition, we
could also join a collection of properties that apply to the statement in the form of a frame object which is
inserted right after the closing parenthesis. Here’s a version of the above knowledge where each statement
have been timestamped (see section 5.2 on page 41 for how):

1 weather {

2
3 (paris,rain) {stamp = 1507093154.766867} := 0.8;

4 (seattle,sunny) {stamp = 1507093158.846844} := 0.2;

5 (london,fog) {stamp = 1507093174.863446} := 0.9;

6 (mawsynram,rain) {stamp = 1507093176.743262} := 1 ;

7 (honolulu,snow) {stamp = 1507093177.671228} := 0 ;

8 (honolulu,rain) {stamp = 1507093178.743266} := 0.1;

9 (honolulu,sunny) {stamp = 1507093179.807307} := 0.6;

3



10 (honolulu,cloudy) {stamp = 1507093180.879415} := 0.3;

11
12 }

Without getting ahead of ourselves (next section), a statement’s properties can be queried the same way as
its terms:

?- #weather(:x,:y) {stamp = :s?[gte(1507093176)]}

-> ( mawsynram , rain , 1507093176.743262 ) := 1.00 (0.001) 1

-> ( honolulu , rain , 1507093178.743266 ) := 0.10 (0.002) 2

-> ( honolulu , sunny , 1507093179.807307 ) := 0.60 (0.002) 3

-> ( honolulu , cloudy , 1507093180.879415 ) := 0.30 (0.002) 4

2.3 Predicate

A Predicate, while being syntactically similar to a Statement, represents not a fact but a question to be
figured out. In the following example we will write a predicate which formulates the query: ”tell me where

it is very likely to rain”:

1 @weather(:x,rain) = <0.7|1.0>

The <0.7|1.0> at the end of the predicate is a truth value range. In this case, it indicates that we will only
accept the statements where truth values are between 0.7 and 1.0. Beside a range, a predicate will also
accept a number or an unbound variable. The latter will allow the truth value of each statements received
for the predicate to be used in the following predicates.

Because a predicate is querying a particular knowledge, its label must be indicated. Here, we’re using the
weather knowledge we defined earlier. The @ prefix indicates to the runtime that the predicate is referencing
a knowledge and not a primitive. Primitives are built-in functions, such as lst.length, which can be used
to get the number of elements in a list term. See Section 5 on page 37 for all the supported primitives. If
we wanted to use a primitive we would have omitted the @ like in this example:

1 lst.length([1,2,3,4,5],:length)

There is however a situation when a prefix (other than !) can be used with a primitive. Using & will cause
the primitive to be executed on the runtime environement threads pool and not within the elemental. We
will often reference this as ”offloading”.

A secondary meaning of the @ prefix is to indicate that the predicate should be considered a trigger. As
stated in section 2 on page 2), when a statement is broadcasted in the runtime environment, the predicate

will set up the prototype to which it belongs for evaluation. For performance reasons, it is often best to
indicate when a given predicate is not a trigger. For these situations, the @ prefix can be replaced by #. If we
look back at our earlier example, any new weather statement will activate the prototype in which we used
that predicate, we can change it as follow:

1 #weather(:x,rain) <0.7|1.0>

~ is another prefix that can be used for a predicate. When used in conjunction with the predicate label self,
it indicates a self referencing predicate (a recursive predicate). When using with any other elemental label,

4



it will cause the query to be sent to one (picked randomly) of the elemental in the substrate with that label.

Using self instead has the advantage of being often shorter to type and to enable the elemental to be cloned
since such predicate will always point to the right elemental. For example, here’s an elemental which calculate
the sum of a all the numbers in a list:

1 lst.sum {

2
3 ([],0)^ :- true;

4 ([:h],:h)^ :- true;

5 ([:h|:r],:s) :- ~self(:r,:s.r), add(:h,:s.r,:s);

6
7 }

The difference between #self and ~self, is that when the tilde is use, the predicate will only be send to the
elemental itself. No other elemental with the same label will get the query.

The fourth prefix that can be used with predicates is *. When used, the query will round-robin between
all elementals that can answer the query. This prefix allows queries to be distributed amongst multiple
elementals, potentially executing concurrently on different CPUs.

The fifth and final supported prefix is ?. when used, the query will continue even in the case where the
predicate fails. When the truth value of the predicate is also inspected (by assiging it to an unbound
variable), using this prefix allows for a custom handling of a failure as seen in this example:

1 maybe.number {

2
3 (:x,:v) :- ?is.number(:x) = :v;

4
5 }

Lastly, if a caret (^) is added right after the terms of the predicate, it will indicate that once the predicate

as succeded, the solver should not consider any other alternative based on any of the predicates that came
before (this is similar to the cut operator in PROLOG). When the predicate is part of series of prototypes,
the other prototypes may still be considered depending on what type of predicates came before the cut. To
illustrate a cut let’s consider the following example which defines str.default as a knowledge which given
a term will either ”return” that term when it is a valid string or a second term if it is not:

1 str.default {

2
3 (:a,:b,:b) :- console.puts("1>"), !is.string(:a)^;

4 (:a,:b,:b) :- console.puts("2>"), is.string(:a) , str.length(:a,0)^;

5 (:a,:b,:a) :- console.puts("3>"), is.string(:a) , str.length(:a,_?[gt(0)]);

6
7 }

If we now query this knowledge with a symbol as first term, we would expect the second term to be unified
with the third term:

?- #str.default(a,"b",:b)

1>

-> ( "b" ) := 1.00 (0.001) 1

5



As we have started each prototypes with a call to the console.puts primitive, we can observe how the second
and third prototypes were indeed not called. Have we had omitted the cut from the two first prototypes, we
would have seen this:

?- #str.default(a,"b",:b)

1>

2>

-> ( "b" ) := 1.00 (0.001) 1

3>

Because each of the prototypes is composed of primitives only, they will be considered sequentially by the
solver. In fact, the solver will always considere prototypes sequentially but if a predicate is not a primitive,
the following prototype will be considered while the solver waits for answers to the query it put out for the
predicate.

As we would expect, if the cutting predicate is not reached by the solver the cut will have no effect as we see
in the following example:

?- #str.default("a","b",:b)

1>

2>

3>

-> ( "a" ) := 1.00 (0.001) 1

As you probably noticed in the past examples, we have used as one of the terms :x and :length. These are
variables and they can stand for any other type of terms (except variables themselves) during the inference

process. See Section 3.8 on page 16 for more details on variables.

2.4 Prototype

A Prototype defines the relationship between a collection of statements, which may produce a new statement

if the logical inference reaches a conclusion. For example, we could create a new logical concept that would
contain a prototype based on the weather example we wrote earlier. We will call it surely raining:

1 surely_raining {

2
3 (:x) :- @weather(:x,rain) = <0.7|1.0>;

4
5 }

A prototype is composed of an entrypoint: a comma-separated list of terms within parentheses followed by
a :- and a comma-separated collection of predicates terminated by a semi-colon. The entrypoint specifies
what a predicate referencing this knowledge would be like and it is also used during inference to check if the
prototype should be used. In this case, it would have a single term that will be unified with the local variable
:x. If we wanted to check if it is surely raining in Paris, we would write:

1 @surely_raining(paris)

If a caret (^) is insterted between the entrypoint and the :-, it will indicates that during inferences when the
prototype’s entrypoint unifies with a statement or a query, no other prototypes should be considered, even if,

6



in the end, the inference fails. This allows for cases where a single prototype among many must be used.

In some instances, it’s often desired to take the negation of a predicate. This can be done by prefixing the
predicate with a ! like this:

1 !is.string(3.14)

Since 3.14 is a number, the call to the primitive is.string will return a truth value of 0 since that primitive

checks if its argument is a string. Negating this will result in the predicate returning 1 as its truth value.
When a prototype contains more than a single predicate, the truth value of the statements matching each
predicate will be used to compute the truth value of the predicate as a fuzzy logical and. For example, to
answer the question ”Where are we the most likely to see a rainbow?” we would write a new knowledge as
follows:

1 maybe_rainbow {

2
3 (:x) :- @weather(:x,rain), @weather(:x,sunny);

4
5 }

With the weather knowledge we have, we would get the answer honolulu with a truth value of 0.1.

Before moving on to the next concept, lets backtrack to the following example:

1 surely_raining {

2
3 (:x) :- @weather(:x,rain) = <0.7|1.0>;

4
5 }

The prototype could have been written using a constrained wildcard variable:

1 surely_raining {

2
3 (:x) :- @weather(:x,rain) = _?[lte(1.0),gt(0.7)];

4
5 }

Using a variable would have allow us to take in the actual truth value of all the statements satisfying the
predicate and use them in whichever way necessary.

Prototypes using :- evaluates their truth value by performing a fuzzy and which takes the minimum value
of all predicates. This behavior can be changed to a fuzzy and where the truth value of each predicates are
multiplied to each other by using &- instead. fuzzy or can be selected using |-, it will compute the truth

value by adding all the truth values. Unlike with the commmon :- which will stop evaluating its predicates
once one evaluate to false, the two evaluation modes just described will evaluate every predicates.

Here’s an example where an animal is either a dog, a cat or a duck:

7



1 animal {

2 (:x) |- #dog(:x), #cat(:x), #duck(:x);

3 }

4
5 dog {

6 no.match = fail

7 } {

8 (fido);

9 (spot);

10 (rover);

11 }

12
13 cat {

14 no.match = fail

15 } {

16 (kitty);

17 (kelly);

18 }

19
20 duck {

21 no.match = fail

22 } {

23 (donald);

24 (daffy);

25 (huey);

26 }

As expected, querying animal will give us:

?- #animal(daffy)

-> ( ) := 1.00 (0.001) 1

Note that a similar behavior could be have obtained by using the cascade mode as follow:

1 animal2 {

2 cascade = yes

3 } {

4
5 (:x) :- #dog(:x)^;

6 (:x) :- #cat(:x)^;

7 (:x) :- #duck(:x)^;

8 (:x)^ :- false;

9
10 }

2.5 Elemental

Elementals in fizz are the main components of the runtime environment (also called substrate). In most
cases, when a knowledge is loaded a new elemental object is created to handle it, however a single elemental

can manage multiple knowledges. There are several types of elementals in fizz . See Section 6 on page 100
for more details. Each elemental presents on the substrate is assigned an unique identifier (GUID), unless
one is provided.

8



Elementals objects can have properties associated with them. In most cases, such data allow for customization
or optimization of the objects. This is done with a frame (which is a supported term, see Section 3.4 on
page 13) in between the knowledge’s body and its label, as seen in the following example:

1 rand {class = MRKCRandomizer, min = 1550, max = 1650} {

2
3 }

In the example we request a specific class of elemental object to be instantiated using the class label and
specify a min and max value. While these two properties are specific to MRKCRandomizer, class is a reserved
label. There’s a few other reserved labels:

alias a symbol by which the elemental will also be known locally
class a symbol indicating the class of the elemental object
clone a symbol indicating the elemental object to be used as the model
guid a string containing the GUID to be used by the elemental object
spawn assigned to the symbol no will not cause the knowledge to

instantiate a new elemental

nosy when set to yes (the default), any reply to a query that wasn’t initiated
by the elemental will be checked to see if it can be used as trigger.

chatty when set to yes (the default), the elemental will publish the
statements it uses as replies to queries.

ttl when set, the elemental will use the value (in seconds) as the value for
the TTL of any queries it send out instead of the global value.

An elemental’s properties can be accessed at runtime by any prototype being executed by the elemental.
Either by using the primitives peek and poke (see Section 5.2 on page 48) or by using the constant access
syntax (e.g. $guid). When using the constant form, the label of the elemental can be retreived at runtime
with $self.

If there is no existing matching elemental for a knowledge (that is, no elemental objects with the same name
and capable of accepting the knowledge), a new one will be instantiated even if spawn is set to no. If the
clone property is given, the first elemental that answers to that label will be cloned and any properties
specifies in the source elemental will be replaced by the value in the target elemental.

Depending on the situation, setting the properties nosy and chatty to no can help improve the performances
of the system by lowering the unecessary background inferring.

2.6 Service

Services are a special case of elemental objects which exist on the substrate as a singleton. Each of these
objects provides services to all other elementals. The services are provided via the classic query/reply pattern
shared by all elementals. See Section 8 on page 126 for more details.

3 Terms

There are 11 categories of terms in fizz . In this section we will introduce each one of them and see how
they are each different from the other. They all have one thing in common, however: their immutability.
While this may be common with atoms, it is less common with more complex data such as lists (at least in
non-functional languages).

9



3.1 Atoms

There are different kinds of atoms in fizz :

• Number

• String

• Symbol

• Binary

• Guid

They are the most basic data that can be handled.

3.1.1 Number

A number in fizz represents a 64-bit numerical value. It can be an integer (signed or unsigned) or a floating
point value, depending on how it is written and eventually postfixed. For example, if we consider the
following statement:

1 yearly_stats {

2
3 (2001,0.4,45u,3f);

4
5 }

The first term will be understood as a signed integer, the second term will be floating point, while the third
term will be unsigned. The last term, by the addition of the postfix f, will be promoted from signed integer
to floating point. Numbers expressed in scientific notation, such as 3e-2 will also be understood as floating
point values. For two numbers to be successfully unified, their difference must be smaller than the epsilon

value specified in the runtime environment configuration (see Section 4.2 on page 20).

3.1.2 String

Strings in fizz are no different from other languages: a series of characters between double quotes. For
example:

1 quotes {

2
3 (DrSeuss,"Don’t cry because it’s over, smile because it happened.");

4 (OscarWilde,"Be yourself; everyone else is already taken.");

5 (Gandhi,"Be the change that you wish to see in the world.");

6
7 }

The common escape sequence using a backslash (for example "\n") is supported with the following characters:

a alert (bell) character
b backspace
f formfeed
n newline
r carriage return
t horizontal tab
v vertical tab

10



Two strings will only unify if their content and length perfectly match. Note that at this time, Unicode isn’t
supported.

3.1.3 Symbol

Symbols in fizz are fundamental. Just like strings, they can contain characters as well as numbers but they
are not started and terminated by double quotes. As such, they cannot contain spaces, nor start with a
number. They are often used as identifiers. Here are a few example of valid symbols:

1 identifiers {

2
3 (jill);

4 (jack74);

5 (bob.phone);

6 (bob.age);

7
8 }

Two symbols will only unify if they perfectly match.

3.1.4 Binary

Binary terms are a way for fizz to handle elementals specific binary data. Such terms uses base64 to encode
binary contents into a string, and they are specified in fizz code using a single quoted functor as in the
following example:

1 blobs {

2
3 (’binary("dGhlIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5IGRvZw=="));

4
5 }

Two binaries will only unify if there’s a perfect match of the decoded binary data. When a knowledge

containing such term is parsed, the parsing will fail if the binary data fails to be decoded.

3.1.5 Guid

Guid terms are a way to represent globally unique identifier. Such terms are specified in fizz code using a
single quoted functor as in the following example:

1 guids {

2
3 (’guid("71cfade6-3cab-c34e-3ca6-e7a43e6fb5f7"));

4
5 }

3.2 List

Lists are common and widely used. They allow the grouping a collection of terms into a single object. The
syntax for a list is a comma-separated collection of terms (including lists) in between square brackets. For
example, we could have written the color example from earlier where each colors RGB values are expressed
as lists:

11



1 color {

2
3 (red,[1.0,0.0,0.0]);

4 (green,[0.0,1.0,0.0]);

5 (blue,[0.0,0.0,1.0]);

6
7 }

There’s a special kind of list that can be used to split the content of the list (head and rest). Used with
recursion, it makes it possible to iterate over all the terms in a list possible. Consider the following knowledge:

1 lst.print {

2
3 ([]);

4 ([:h|:r]) :- console.puts(:h), @lst.print(:r);

5
6 }

The above example sets up lst.print with a prototype, which will print the head of the list and then
recursively call itself with the rest of the list. The knowledge also constains a statement for when the list is
empty. While it is not mandatory, it will cause a call to lst.print to always succeed.

3.3 Data

Data terms are less practical but more efficient than a list to use when a large number of values of the same
type must be held and processed. Such terms are specified in fizz code using a single quoted functor as shown
in the following example, where the first term is the type of each value stored in the data, and the second
term is a base64 string containing the values:

1 data {

2
3 (’data(byte,"BQz1OA=="));

4
5 }

When it comes to unification, a data can be unified with a list, as seen in the following knowledge:

1 data.print {

2
3 ([])^ :- true;

4 ([:e|:r]) :- console.puts(:e), ~self(:r);

5
6 }

?- #data(:D), #data.print(:D)

5

12

245

56

Subtitution is also supported as shown in the following example where we use a knowledge which build a
data term holding as many random numbers as requested:

12



1 data.rnd {

2
3 (1,:d)^ :- daa.make(real32,[%rnd],:d);

4 (:n,[%rnd|:d]) :- sub(:n,1,:n1), ~self(:n1,:d);

5
6 }

?- #data.rnd(10,:D), daa.member(:v,:D)

-> ( 0.197688 ) := 1.00 (0.003) 1

-> ( 0.269155 ) := 1.00 (0.003) 2

-> ( 0.678092 ) := 1.00 (0.003) 3

-> ( 0.442051 ) := 1.00 (0.004) 4

-> ( 0.095426 ) := 1.00 (0.004) 5

-> ( 0.998170 ) := 1.00 (0.004) 6

-> ( 0.295657 ) := 1.00 (0.004) 7

-> ( 0.624670 ) := 1.00 (0.004) 8

-> ( 0.790462 ) := 1.00 (0.004) 9

-> ( 0.463402 ) := 1.00 (0.004) 10

Finally, see Section 5.4 on page 56 for details on the primitives that can be used with data.

3.4 Frame

In fizz , a frame is the equivalent of a dictionary in other languages. It stores key/value pairs. This is done
by having a comma-separated collection of key/value pairs within curly braces. Here is an example:

1 gameboy.color {

2
3 ({r = 0.509803, g = 0.784313, b = 0.294117});

4 ({r = 0.325490, g = 0.670588, b = 0.392156});

5 ({r = 0.164705, g = 0.549019, b = 0.349019});

6 ({r = 0.000000, g = 0.294117, b = 0.282352});

7
8 }

While the value associated with a key can be any valid term (including a Frame), the key (also called label)
can only be a valid atom. Unlike with lists, unification of two frames will only be done over the labels that
both terms have in common.

3.5 Functor

A Functor in fizz is akin to a structure, although it really is more of a named list (since a C-like structure
will have fields). Here’s an example where the likelihood of a given weather is given as a functor:

1 weather2 {

2
3 (paris,rain(0.5),wind(0.1),sun(0.4),snow(0.1),fog(0.1));

4 (london,rain(0.6),wind(0.1),sun(0.3),snow(0.0),fog(0.7));

5
6 }

When it comes to unifying functors. The label of each functor will be unified as well as each of the terms,
therefore arity (the number of terms) of each functors also need to be the same.

13



3.6 Range

Range terms are a way to express a range of numerical values between minimum and maximum values. The
syntax of a range is something that we have already encountered in Section 2.3 on page 4 when expressing the
acceptable truth value range for a predicate. Here’s an example where we look at the manufacturer-reported
range of some electrical cars:

1 car.range {

2
3 (ford(focus),76);

4 (tesla(model_s),<210|315>);

5 (tesla(model_x),<237|289>);

6 (chevy(bolt),238);

7 (nissan(leaf),107);

8
9 }

A range will unify with a fellow range but also with a number as long as it is within the range. If we
were to query the above knowledge for a car with a range of at least 300 miles, we would do so like this:
@car.range(:x,300) and get the variable :x bound to the value tesla(model s).

3.7 Regexp

A Regexp term is a way to represent a regular expression with which to unify strings. Such terms are specified
in fizz code using a single quoted functor as shown in the following example:

?- rex.match(’regexp("(the|a)?\s?(dog|cat)\sis\s(wet|cold|sick)"),"cat is sick",:m)

-> ( ["cat is sick", "", "cat", "sick"] ) := 1.00 (0.001) 1

As fizz uses the PCRE2 library1 to implement the regular expression support, the following flags (to be
provided within a list) can be used to modify the way the expression is compiled:

1see https://www.pcre.org/

14



ANCHORED Force pattern anchoring
ALLOW EMPTY CLASS Allow empty classes
ALT BSUX Alternative handling of \u, \U, and \x
ALT CIRCUMFLEX Alternative handling of ı̂n multiline mode
ALT VERBNAMES Process backslashes in verb names
AUTO CALLOUT Compile automatic callouts
CASELESS Do caseless matching
DOLLAR ENDONLY $ not to match newline at end
DOTALL . matches anything including NL
DUPNAMES Allow duplicate names for subpatterns
ENDANCHORED Pattern can match only at end of subject
EXTENDED Ignore white space and comments
FIRSTLINE Force matching to be before newline
LITERAL Pattern characters are all literal
MATCH UNSET BACKREF Match unset backreferences
MULTILINE ând $ match newlines within data
NEVER BACKSLASH C Lock out the use of \C in patterns
NO AUTO CAPTURE Disable numbered capturing parentheses (named ones available)
NO AUTO POSSESS Disable auto-possessification
NO DOTSTAR ANCHOR Disable automatic anchoring for .*
NO START OPTIMIZE Disable match-time start optimizations
UNGREEDY Invert greediness of quantifiers
USE OFFSET LIMIT Enable offset limit for unanchored matching

The CASELESS flag can be used to ignore the case during matching (note that flags are case-insensitive):

?- rex.match(’regexp("[a|b]+"),"aabb",:l)

-> ( ["aabb"] ) := 1.00 (0.001) 1

?- rex.match(’regexp("[a|b]+"),"ABABA",:l)

?- rex.match(’regexp("[a|b]+",[caseless]),"ABABA",:l)

-> ( ["ABABA"] ) := 1.00 (0.001) 1

Since, regexp are full fledged terms, they can be used in predicates and prototype’s entrypoint as shown in
this example:

1 str.is {

2
3 (’regexp("[+-]?([0-9]*[.])?[0-9]+"),number)^ :- true;

4 (_,string) :- true;

5
6 }

Lastly, the primitive rex.match which we have used above can be used within a contrained variable. This
allow the matching content to be accessed:

1 test {

2
3 (:s?[rex.match(’regexp("(the|a)?\s?(dog|cat)\sis\s(wet|cold|sick)"),:s,[_,_,_,:c])],:c) :- true;

4
5 }

?- #test("dog is sick",:l)

-> ( "sick" ) := 1.00 (0.002) 1

?- #test("dog is wet",:l)

15



-> ( "wet" ) := 1.00 (0.002) 1

?- #test("dog is gone",:l)

3.8 Variable

Variables in fizz , like in any logic programming language, are placeholders for any terms. As we have seen in
several examples, the syntax for defining a variable is a symbol prefixed with a colon. Often when unification
is happening, it is handy to indicate that we do not care about a given term. For such situations, we use the
wildcard variable, which is a single underscore. If we take the car.range knowledge we defined above, we
may want to list all the tesla cars, but without caring about the range of each model. We would express
this in a predicate as follows: @car.range(tesla(:m), ), and the :m variable will be bound to the values
model s and model x.

Because inferences in fizz are distributed (within a single substrate or accross multiple networked substrates),
the number of replies to a query need to be minimized whenever possible. As such, variables support
constraints specifications. Let’s look at an example where we are querying the gameboy.color knowledge
we defined earlier:

?- @gameboy.color({r = :r, g = :g, b = :b })

-> ( 0.509803 , 0.784313 , 0.294117 ) := 1.00 (0.001) 1

-> ( 0.325490 , 0.670588 , 0.392156 ) := 1.00 (0.001) 2

-> ( 0.164705 , 0.549019 , 0.349019 ) := 1.00 (0.001) 3

-> ( 0 , 0.294117 , 0.282352 ) := 1.00 (0.001) 4

If we were only interested in the colors where the red component is within 0.1 and 0.4, we could modify
our query to use primitives to put constraints on the value bound to the :r variables:

?- @gameboy.color({r = :r, g = :g, b = :b }), gt(:r,0.1), lt(:r,0.4)

-> ( 0.325490 , 0.670588 , 0.392156 ) := 1.00 (0.001) 1

-> ( 0.164705 , 0.549019 , 0.349019 ) := 1.00 (0.001) 2

We now have two matching colors instead of four. However, we did that by filtering the answers we got to
our query on the gameboy.color knowledge. By specifying constraints directly on the variable within the
predicate, we could have only received the two matching statements:

?- @gameboy.color({r = :r?[gt(0.1),lt(0.4)], g = :g, b = :b})

-> ( 0.325490 , 0.670588 , 0.392156 ) := 1.00 (0.001) 1

-> ( 0.164705 , 0.549019 , 0.349019 ) := 1.00 (0.001) 2

Constraints are specified after a variable with a question mark followed by list or a variable which will be
bound at runtime to a list. Each of the element in the list (which can be a functor, range or symbol) is a
constraint that any value bound to the variable must satisfy. In the above example, we indicated that the
value for :r must be greater than 0.1 and less than 0.4.

Constraints support multiple functors as listed in this table:

16



gt greater than
gte greater than or equal
lt lesser than
lte lesser than or equal
neq not equal
aeq almost equal
eq equal/unify
fun.label value is the label of a functor

lst.member value is present in a list

lst.except value is not present in a list

lst.incl value is a list that include the items in a list

lst.excl value is a list that exclude the items in a list

is.atom value is an atom term

is.binary value is a binary term

is.string value is a string term

is.symbol value is a symbol term

is.number value is a number term

is.regexp value is a regexp term

is.guid value is a guid term

is.list value is a list term

is.range value is a range term

is.frame value is a frame term

is.func value is a functor term

is.quirk value is a quirk term

is.data value is a data term

is.bound a value is bound
is.unbound no value is bound yet
is.even value is an even number

is.odd value is an odd number

str.find value is a string which contains a specified substring

Most functors requiere a single term except the is.* ones which can be given as a symbol, and aeq which
expects two. Constraints can be use on any variables, including in a prototype’s entrypoint as shown here:

1 lst.zip {

2
3 ([],[])^ :- true;

4 ([:e],[:e])^ :- true;

5 ([:e,:e|:r],:l) :- #lst.zip([:e|:r],:l);

6 ([:e,:f?[neq(:e)]|:r],[:e|:l]) :- #lst.zip([:f|:r],:l);

7
8 }

Some of the primitives can be used directly as constraints. Check the specific details for a primitive to know
if it supports this situation.

3.9 Constant

Constants in fizz are a special kind of variable whose content is static. Aside from the constants defined by
the runtime environment, new ones can be defined via command line arguments. Constants do not support
constraints, and are prefixed with a dollar sign. The following table lists all the constants provided by the
runtime environment:

17



$true the boolean value for true
$false the boolean value for false
$cores the number of CPU cores enabled for fizz
$pi the numeral value of π

3.10 Volatile

Volatiles in fizz are a special kind of constant whose content is most likely to change in between unifications.
They can be used to add, for example, a time stamp to a statement being asserted (added to a knowledge)
like in this example:

?- assert(car(blue,%now))

-> ( ) := 1.00 (0.001) 1

?- @car(:color,:stamp)

-> ( blue , 1503602300.742353 )

The syntax for volatiles is similar to constants, but with a percent instead of the dollar sign. The following
table lists all the volatiles currently supported:

%now current time (UTC) in seconds since (Unix) Epoch
%now.ms current time (UTC) in miliseconds since (Unix) Epoch
%today date and time as a string

%rnd a randomly generated number between 0 and 1
%sym a randomly generated symbol

%sym.3 a randomly generated symbol of 3 characters length
%sym.4 a randomly generated symbol of 4 characters length
%sym.6 a randomly generated symbol of 6 characters length
%sym.8 a randomly generated symbol of 8 characters length
%sym.10 a randomly generated symbol of 10 characters length
%gui a randomly generated GUID as a string

Because of their values are always changing, volatiles will always unify with anything. They should really
not be used in a statement.

3.11 Quirk

Quirks in fizz can be understood as either tuples or annotated terms. They are composed of two terms,
refererred as head and tail, separated by a caret. When such term is unified to any other term, it will be
unified as whatever the head term is. Here’s an example:

1 quirk {

2
3 (:v?[lt(5)])^ :- console.puts(:v," is less than five");

4 (_^:v?[lt(5)]) :- console.puts(:v," is less than five");

5
6 }

?- #quirk(2)

2 is less than five

-> ( ) := 1.00 (0.001) 1

?- #quirk(2^3)

18



2^3 is less than five

-> ( ) := 1.00 (0.001) 1

?- #quirk(6^3)

3 is less than five

-> ( ) := 1.00 (0.000) 1

4 Console

4.1 Usage

Because of its asynchronous and concurrent nature, fizz provides a console with a slightly unusual mode of
operation. The default state of the console is to display any outputs coming from the runtime or from the
queries entered by the user. Here’s the console when the program is started:

$ ./fizz.x64

fizz 0.1.0-P (20171116.1221) [x64|3]

To switch to input, for example to enter a query or any of the supported console’s command, press the ESC
key or one of the arrow keys. When the console is waiting for user input, it will display a ?-. If Ctrl-C
is pressed, the console will exit the input state. The up and down arrow keys also serve to cycle thru the
history. While, the console is in such mode, any output coming from the runtime will be buffered until the
mode is exited. Press the enter key to exit the input mode. If a query or command was entered, it will be
executed (in most case asynchronously) and any result will be printed:

fizz 0.1.0-P (20171116.1221) [x64|3]

load : loading manual.fizz ...

load : loaded manual.fizz in 0.013s

?- @gameboy.color(:color)

-> ( {r = 0.509803, g = 0.784313, b = 0.294117} ) := 1.00 (0.001) 1

-> ( {r = 0.325490, g = 0.670588, b = 0.392156} ) := 1.00 (0.001) 2

-> ( {r = 0.164705, g = 0.549019, b = 0.349019} ) := 1.00 (0.001) 3

-> ( {r = 0, g = 0.294117, b = 0.282352} ) := 1.00 (0.001) 4

Each solution to a query will be presented as a statement where each variable becomes one of the statement’s
terms (in the order they appears in the predicates). The truth value will be printed after, followed by the
elapsed time (in seconds) since the query was sent. The last number is a sequential number for the reply. It
is worth noting that in fizz a query will not be stopped at the first answer.

If you know that a query is going to generate many replies that you don’t care about, you can set the property
verbose of the console to no using the poke primitive. For example:

?- /spy(append,gameboy.color)

spy : observing gameboy.color

?- poke(verbose,no)

?- @gameboy.color(:color)

spy : [1589955674.084] Q @gameboy.color(:color) (14.999913)

spy : [1589955674.084] R gameboy.color({r = 0.509803, g = 0.784313, b = 0.294117}) (14.999781)

spy : [1589955674.084] R gameboy.color({r = 0.325490, g = 0.670588, b = 0.392156}) (14.999781)

spy : [1589955674.084] R gameboy.color({r = 0.164705, g = 0.549019, b = 0.349019}) (14.999781)

spy : [1589955674.084] R gameboy.color({r = 0, g = 0.294117, b = 0.282352}) (14.999781)

19



Another way to silence some of the response is to replace the label of given variable that you do not wish to
see the possible values by an all upper case label. This is a convention that only works within the console.
For example:

?- #product(:n,:m,:Y), gt(:Y,2003)

-> ( model_e , tesla ) := 1.00 (0.001) 1

-> ( iphone_x , apple ) := 1.00 (0.001) 2

-> ( vive , htc ) := 1.00 (0.001) 3

-> ( iphone , apple ) := 1.00 (0.001) 4

-> ( iphone_3GS , apple ) := 1.00 (0.001) 5

-> ( 7710 , nokia ) := 0.90 (0.001) 6

When invoking the executable, the arguments of the command line can be any numbers of strings specifying
the path and name of files to be loaded by the runtime, as seen in the above example. If the path leads to
a folder, it will be assumed that it is a previously frozen runtime enviroment to kindle. The command line
option -l can be used to switch the console logging on. This option will expect as argument the path and
name of the log file to be created. For example:

$ ./fizz.x64 -l test.log manual.fizz

The command line option -q can be used to specify a query to be executed right after the executable
enter its Read–Eval–Print Loop (REPL). Be aware, thought that loading files in fizz is done asynchronously.
Therefore a query using any yet-to-be loaded knowledges will fail. For example:

./fizz.x64 -q "/load(\"manual.fizz\")"

fizz 0.1.0-P (20171116.1221) [x64|3]

?- /load("manual.fizz")

load : loading manual.fizz ...

load : loaded manual.fizz in 0.013s

Any key pressed while outside of the console input state will cause a console.keypress statement to be
broadcasted in the substrate. Any elemental can make use of it (via an activable predicate) and execute
inferences based on the key that was pressed. The sole term of that statement is the ASCII code of the key.
As an example, here’s a knowledge which display an hint to the user each time it press a key:

1 help {

2
3 () :- @console.keypress(_), hush, console.puts("press ESC to enter input mode");

4
5 }

Lastly, pressing Ctrl-C outside of the input state, will cause the executable to terminate.

4.2 Adjusting the runtime

Severals parameters of the runtime environment can be adjusted by creating (or modifying) a JSON file. In
order for the executable to use that file when it starts, the file must have the same name as the executable
and have the exension .json. Here’s an example of a file that adjusts all the possible parameters:

20



1 {

2 "runtime" : {

3 "scheduler" : {

4 "threads" : 4,

5 "affinity" : true,

6 "spinning" : 4

7 },

8 "offloader" : {

9 "minpool" : 1,

10 "maxpool" : 4,

11 "timeout" : 750,

12 "affinity" : false

13 },

14 "livereload" : {

15 "enabled" : true,

16 "interval" : 250

17 }

18 },

19 "substrate" : {

20 "ttl" : {

21 "type" : "real",

22 "data" : 55.0

23 },

24 "grace" : {

25 "type" : "real",

26 "data" : 0.5

27 },

28 "sspr" : {

29 "type" : "uint",

30 "data" : 8

31 },

32 "pulse" : {

33 "type" : "uint",

34 "data" : 250

35 },

36 "epsilon" : {

37 "type" : "real",

38 "data" : 0.000001

39 },

40 "lettered" : {

41 "type" : "string",

42 "data" : "MRKCBFSolver"

43 },

44 "bundle.len" : {

45 "type" : "uint",

46 "data" : 1024

47 },

48 "bundle.tmo" : {

49 "type" : "real",

50 "data" : 0.5

51 },

52 "mzttl" : {

53 "type" : "real",

54 "data" : 1.5

55 },

56 },

57 "modules" : {

58 "www" : {

21



59 "dnstimeout" : 3.5,

60 "maxconnect" : 8,

61 "maxrequest" : 4,

62 "maxresolve" : 4,

63 "maxcontent" : 2048

64 }

65 }

66 }

It contains three sections: the runtime, substrate and modules. The former adjusts the threading and
multi-cores models of the runtime while substrate adjusts the common behavior of all elemental objects
will use. The later provides parameters for the modules that may be loaded.

Let’s look at the key/value pairs in the scheduler section:

threads represents the number of threads to be used. This number will not change at any
point in time

affinity if set to true, each thread will be assigned to a given core of the host
spinning the maximum number of consecutive time an elemental will get time on a

core before it gets swapped out for another elemental. The lesser the
value the more the scheduler will round-robin between the elementals.

The offloader section is responsible for tuning the part of the runtime that handles offloaded processing
using a dynamically resizable thread pool. The execution of any primitives flagged as offloaded will be
executed on the pool instead of being executed within the elemental object calling it. The key/value pairs
meanings is as follows:

minpool the minimum number of threads in the pool at any given time.
maxpool the maximum number of threads in the pool at any given time.
timeout the maximum amount of time a non-busy thread will wait before it exits the pool.
affinity if set to true, each thread will be assigned to a given core of the host.

The livereload section deals with the automatic live code reload built in fizz . If this section is not present
in the configuration file, this functionality will not be available. The command line option -n can be used
to force this functionality to be disabled even if it is enabled in the configuration JSON file. The key/value
pairs meanings is as follows:

enabled true to enable functionality, false to disable.
interval interval of time (in ms) in between checks of the loaded scripts file’s timestamp.

Because the substrate section of the JSON file deals with the configuration of each elemental, the format
that is expected is a little different. The meaning of each value is:

ttl this is the time to live for anything posted on the substrate (in seconds).
grace this is the grace period for any query (in seconds).
sspr the maximum number of statements to be included in a single query reply. If

there are more statements to be sent, more replies will be sent.
pulse the frequency (in miliseconds) at which each elementals gets to perform cleanups and other

cyclic tasks. The lower the value, the more CPU will be used.
epsilon the upper bound on the relative error due to rounding in floating point arithmetic to be used when

comparing numbers.
lettered default elemental class to be used when creating elemental to handle asserted

statements.
bundle.len the maximum number of statement that can be bundled into a single knowledge before it is asserted

in the substrate.
bundle.tmo the timeout value (seconds) before bundled statements are to be asserted if no other statements

is added to the bundle.
mzttl this is the time to live for any statements that is cached by an elemental set to

memoize (in seconds).

22



The httpclient section (in the www section of modules) is responsible for tuning the built-in HTTP client
used by the elemental class FZZCHttpPuller. The key/value pairs meanings is as follows:

dnstimeout timeout (in seconds) when performing a DNS lookup.
maxconnect maximum number of concurrent connection to any host.
maxrequest maximum number of concurrent request for the same host (0 for no limit).
maxresolve maximum number of concurrent Domain-name resolution (0 for default).
maxcontent maximum size of the content to store in RAM, before storing it into a

temporary file.

Lastly, there are two command line options of interest: -s and -c. The formost can be used to specify an
alternate settings JSON file as show here:

./fizz.x64 -s laptop.json manual.fizz

fizz 0.1.0-P (20171116.1221) [x64|3]

load : loading manual.fizz ...

load : loaded manual.fizz in 0.013s

The latter allows constants to be defined as shown in this example:

./fizz.x64 -c user=$USER

fizz 0.1.0-P (20171116.1221) [x64|3]

?- console.puts($user)

jlv

-> ( ) := 1.00 (0.000) 1

The expected syntax for each defined constants is label=value. The value can be any term while the label
is expected to be a symbol. Multiple -c options can be given.

4.3 Solution

A solution is a JSON file that can be loaded by fizz and describe a given set of source files, global constants
and modules to be loaded. Here’s an example of such file for the linkg.fizz sample:

1 {

2 "solution" : {

3 "modules" : ["modLGR"],

4 "sources" : ["linkg.fizz"],

5 "globals" : [],

6 "queries" : []

7 }

8 }

To be valid, such file much constains a solution object, itself containing the following (all optional) labels:

modules a list of modules to be loaded (without file extensions)
sources a list of sources to be loaded (which path is relative to the path of the solution file)
globals a list of objects describing the constants to be created. Each of the objects must contains

two label/value pairs: label and value.
queries a list of queries (in the form of strings containing predicates) to be executed once all the

sources and modules files have been loaded.

Here’s an example of the solution file for the weather.fizz sample:

23



1 {

2 "solution" : {

3 "modules" : [],

4 "sources" : [

5 "weather.fizz"

6 ],

7 "globals" : [

8 {

9 "label" : "api.key",

10 "value" : "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

11 }

12 ],

13 "queries" : []

14 }

15 }

To use this solution you will need to replace the value for api.key by your own key.

4.4 Commands

Commands differs from queries by starting with a slash. Otherwise, their syntax is similar to a predicate

(minus the truth value range). For example:

?- /load("./samples/manual.fizz")

load : loading ./samples/manual.fizz ...

load : loaded ./samples/manual.fizz in 0.011s

Will load the contents of the manual.fizz file into the runtime.

bye

/bye

Close the console and terminate the executable.

create

/create(symbol,symbol,frame,number?)

Creates one (or more if a fourth terms is provided) elemental object which label will be the first term. The
second term is the name of the /em class on which the elemental should be based. The third term contains
the properties of the object. For example, to create ten elementals labeled product each with a statements

limit of 1000, we would type:

?- /create(product,MRKCLettered,{s.limit = 1000},10)

create : okay.

cpus

/cpus

Print to the console the number of cores the host computer has. This can be handy when you do not know
that answer and want to adjust the configuration of the runtime.

24



?- /cpus

host has 4 CPUs

delete

/delete(symbol|string,symbol|string*)

The delete command allows for elementals to be removed from the substrate. The command will accept
any numbers of symbols or string as its terms. The only supported strings are GUID while the symbols can
be either an alias or a knowledge’s label. When the later is used, all elementals objects with this label will
be removed:

?- /delete(number,fill.it,"3716b075-7d64-2440-eda0-96b1b3e9ae20")

delete : completed in 0.000s

If any of the terms doesn’t resolve into an actual elemental, the command will still complete successfully.

export.csv

/export.csv(string,functor,string,list,frame?)

This command exports statements into a file storing tabular data (numbers and strings) in a plain text
format, using the character from the third term as delimiter for the generated lines. The first term indicates
the path and filename of the file to be created, while the second term is the predicate to be queried for. The
list provided as fourth term contains the index of each columns (starting from 0) to be included in each
lines. If provided, the fifth term is a frame which can specify a timeout value (in seconds) after which the
command shall complete (with the label tmo); and if the truth value of each statements is to be added as a
column (with the label truth). When no timeout is provided, the default is half a second.

As an example, let’s consider the following two knowledges:

1 product {

2
3 (model_e,tesla,2012);

4 (iphone_x,apple,2018);

5 (vive,htc,2015);

6 (coconut_water,zico,2000);

7
8 }

9
10 product {

11
12 (iphone,apple,2007);

13 (iphone_3GS,apple,2009);

14 (7710,nokia,2005) := 0.9;

15
16 }

To export all statements with a third term greater than 2005, we would use the command as follow:

?- /export.csv("products.csv",product(_,_,_?[gt(2005)]),",",[0,2],{truth = yes})

export.csv : wrote 5 lines in 0.021s.

25



Which will generate a products.csv file containing:

1 iphone,2007,1.0

2 iphone_3GS,2009,1.0

3 model_e,2012,1.0

4 iphone_x,2018,1.0

5 vive,2015,1.0

By using an intermediate knowledge instead of directly querying the knowledge that interests us, we could
have further filter and/or modify the statements generated. Here’s a simple example which add a GUID to
each of the lines that will be stored in the CSV file:

1 product.g {

2
3 (:l,:m,:y,%gui) :- #product(:l,:m,:y?[gt(2005)]);

4
5 }

The export.csv command will then be:

?- /export.csv("products.csv",product.g(_,_,_,_),",",[])

export.csv : wrote 5 lines in 0.016s.

And it the CSV file contents will be:

1 model_e,tesla,2012,3c5b83d9-278e-654a-3c88-07d99d2c1fd0

2 iphone_x,apple,2018,5036ef91-7a5f-904b-fa89-771e852f492e

3 vive,htc,2015,9369d034-941b-de47-66b8-877da629fae5

4 iphone,apple,2007,6fa0953c-f6b4-bd45-8bb7-6e21ab9df9e8

5 iphone_3GS,apple,2009,33118137-4253-0241-82ba-951a3ed16de9

export.json

/export.json(string,functor,frame?)

This command exports statements into a JSON file. The first term indicates the path and filename of the
file to be created, while the second term is the predicate to be queried for. If provided, the third term is
a frame which can specify a timeout value (in seconds) after which the command shall complete (with the
label tmo). When no timeout is provided, the default is half a second. Note that only string, number, list
and frame can be exported to JSON.

As an example, let’s consider the following gameboy.color knowledge:

1 gameboy.color {

2
3 ({r = 0.509803, g = 0.784313, b = 0.294117});

4 ({r = 0.325490, g = 0.670588, b = 0.392156});

5 ({r = 0.164705, g = 0.549019, b = 0.349019});

6 ({r = 0.000000, g = 0.294117, b = 0.282352});

7
8 }

26



If we wanted to export the colors for which the red value if in between 0.1 and 0.4, we would do:

?- /export.json("color.json",gameboy.color({r = \_?[gt(0.1),lt(0.4)]}))

export.json : wrote file color.json

And the generated JSON file will contain:

1 {

2 "gameboy.color" : [ {

3 "r" : 0.325490,

4 "g" : 0.670588,

5 "b" : 0.392156

6 } , {

7 "r" : 0.164705,

8 "g" : 0.549019,

9 "b" : 0.349019

10 } ]

11 }

Since there was more than one matching statement, the generated JSON object will contain an array with
all the frames that were in the statements. The key for that array will be the label of the functor used to
query the substrate. If the array only contains a single frame, the frame only will be exported as we can see
in the generated file:

1 {

2 "r" : 0.325490,

3 "g" : 0.670588,

4 "b" : 0.392156

5 }

When the statements to be exported do not contains a single term, all the exportable terms will be exported
within a JSON array. For example, if we consider the following knowledge:

1 product {

2
3 (model_e,tesla,2012);

4 (iphone_x,apple,2018);

5 (vive,htc,2015);

6 (coconut_water,zico,2000);

7
8 }

9
10 product {

11
12 (iphone,apple,2007);

13 (iphone_3GS,apple,2009);

14 (7710,nokia,2005) := 0.9;

15
16 }

and export it as follow:

27



?- /export.json("products.json",product(_,_,_?[gt(2005)]))

export.json : wrote file products.json

The JSON file will then contains:

1 {

2 "product" : [ [ "iphone" , "apple" , 2007 ] ,

3 [ "iphone_3GS" , "apple" , 2009 ] ,

4 [ "model_e" , "tesla" , 2012 ] ,

5 [ "iphone_x" , "apple" , 2018 ] ,

6 [ "vive" , "htc" , 2015 ]

7 ]

8 }

freeze

/freeze(string)

This command freezes the runtime enviroment to a binary format that can be kindled at a later point. The
only accepted term is the path of the folder in which the saving to be done. Please note that any on-going
query is not preserved.

history.cls

/history.cls

Clear the console’s history.

history.len

/history.len(number)

Change the length of the console’s history. The default is 100.

import.csv

/import.csv(string,symbol,string,list,number?,number?)

Imports data from a file storing tabular data (numbers and strings) in a plain text format (using any char-
acters from the third term as delimiter and generates statements from each line. The first term indicates the
path and filename of the file to be imported, while the second term is the label to be used for the statements

that will be generated. The list provided as fourth term contains the number of each columns (starting
from 0) to be extracted from each line of the file and put in the statement. If provided, the fifth term is
the number of lines from the file to skip and if there is a fifth term it will be the number of lines to be processed.

If we wanted to import a CSV file such as this:

1 5.1,3.5,1.4,0.2,Iris-setosa

2 4.9,3.0,1.4,0.2,Iris-setosa

3 7.0,3.2,4.7,1.4,Iris-versicolor

4 6.4,3.2,4.5,1.5,Iris-versicolor

5 6.3,3.3,6.0,2.5,Iris-virginica

6 5.8,2.7,5.1,1.9,Iris-virginica

28



We would do as follows:

?- /spy(append,iris)

spy : observing iris

?- /import.csv("iris.data",iris,",",[])

import.csv : 6 lines read in 0.001s.

spy : S iris(5.100000, 3.500000, 1.400000, 0.200000, "Iris-setosa") := 1.00

spy : S iris(4.900000, 3, 1.400000, 0.200000, "Iris-setosa") := 1.00

spy : S iris(7, 3.200000, 4.700000, 1.400000, "Iris-versicolor") := 1.00

spy : S iris(6.400000, 3.200000, 4.500000, 1.500000, "Iris-versicolor") := 1.00

spy : S iris(6.300000, 3.300000, 6, 2.500000, "Iris-virginica") := 1.00

spy : S iris(5.800000, 2.700000, 5.100000, 1.900000, "Iris-virginica") := 1.00

Since we wanted all the columns to be used, we simply provide an empty list as the fourth term. Also, if a
column is detected as holding a numerical value, it will be automatically converted as a number. If we had
wanted to convert the last column into a symbol (instead of the string we are getting), we would have had
to use an intermediary elemental object which would have made the conversion. Something such as this:

1 convert {

2
3 () :- @input(:e1,:e2,:e3,:e4,:l),

4 str.tolower(:l,:l1),str.tosym(:l1,:l2),

5 assert(iris(:e1,:e2,:e3,:e4,:l2),1.0f);

6
7 }

It simply states that each time an input statement is broadcasted in the substrate (which is what import
does), the last term will be converted to a symbol after having its case changed to lowercase. Finally, a new
iris statement is asserted. Running it we now get:

1 ?- /spy(append,iris)

2 spy : observing iris

3 ?- /import.csv("iris.data",input,",",[])

4 import.csv : 6 lines read in 0.001s.

5 spy : S iris(5.100000, 3.500000, 1.400000, 0.200000, iris-setosa) := 1.00

6 spy : S iris(4.900000, 3, 1.400000, 0.200000, iris-setosa) := 1.00

7 spy : S iris(7, 3.200000, 4.700000, 1.400000, iris-versicolor) := 1.00

8 spy : S iris(6.400000, 3.200000, 4.500000, 1.500000, iris-versicolor) := 1.00

9 spy : S iris(6.300000, 3.300000, 6, 2.500000, iris-virginica) := 1.00

10 spy : S iris(5.800000, 2.700000, 5.100000, 1.900000, iris-virginica) := 1.00

import.json

/import.json(string,symbol,list?)

Imports data from a JSON file. The first term indicates the path and filename of the file to be imported,
while the second term is the label to be used for the statement that will be generated. If provided, the third
term is a list of options to be used for the processing of the JSON objects contained in the file: stringify
will keep all strings as string terms, symbolize will force all strings to be converted as symbols. The default
behavior is to convert the strings that can be considered symbol as such.

As example, let’s look at importing the foreign exchange rates from such a site as fixer.io2. For the sake of
simplicity, the JSON file below was abbreviated:

2http://api.fixer.io/latest?base=USD

29



1 {

2 "base":"USD",

3 "date":"2017-12-08",

4 "rates":{

5 "AUD":1.3303,

6 "BGN":1.6656,

7 "BRL":3.2733,

8 "CAD":1.2836,

9 "CHF":0.99676,

10 "CNY":6.6197,

11 "CZK":21.764,

12 "DKK":6.3377,

13 "GBP":0.7454

14 }

15 }

When we import the file, it will generate a statement containing a single frame. To further process the
frame to fit your need, you will need to use some supporting knowledge, so that the right statements can be
generated. In the sample etc/samples/fixer.fizz you will find such support code that will process the
JSON data from above:

?- /spy(append,conversion)

spy : observing conversion

?- /import.json("./etc/usd-mini.json",input)

import.json : ./etc/usd-mini.json read in 0.001s.

spy : S conversion(USD, AUD, 1.330300) := 1.00 (700.000000)

spy : S conversion(USD, BGN, 1.665600) := 1.00 (700.000000)

spy : S conversion(USD, BRL, 3.273300) := 1.00 (700.000000)

spy : S conversion(USD, CAD, 1.283600) := 1.00 (700.000000)

spy : S conversion(USD, CHF, 0.996760) := 1.00 (700.000000)

spy : S conversion(USD, CNY, 6.619700) := 1.00 (700.000000)

spy : S conversion(USD, CZK, 21.764000) := 1.00 (700.000000)

spy : S conversion(USD, DKK, 6.337700) := 1.00 (700.000000)

spy : S conversion(USD, GBP, 0.745400) := 1.00 (700.000000)

The code in fixer.fizz splits the work over two elementals: process and process.rates:

1 process {

2
3 () :- @input(:f),

4 frm.fetch(:f,base,:base),

5 frm.fetch(:f,rates,:r),

6 #process.rates(:base,:r);

7
8 }

The first one, activated when an input statement is published on the substrate, fetchs from the frame it
contains the value for the base and rates labels and pass them to the second elemental:

1 process.rates {

2
3 (:base,:f) :- frm.fetch(:f,:l?[is.symbol],:v?[is.number]),

4 assert(conversion(:base,:l,:v),1.0f);

30



5
6 }

Since the rates are contained in a single frame, the elemental, concurrently fetchs all the label/value pairs
from it, checking that they both match the expected type, then a new conversion statement is asserted.

import.txt

/import.txt(string,symbol,number?,number?)

Imports data from a file storing data in plain text and generates a single statements from each line. The
first term indicates the path and filename of the file to be imported, while the second term is the label to be
used for the statements that will be generated. If provided, the third term is the number of lines from the
file to skip and if there is a fourth term it will be the number of lines to be processed. Each of the statement

will have two terms: the first being a sequential number (starting at 0) and the second a string containing
the whole line:

?- /spy(append,dna)

spy : observing dna

?- /import.txt("./etc/data/U00096.3.txt",dna,1,10)

spy : S dna(0, "AGCTTTTCATTCTGACTGCAACGGGCAATA...AAAAAAGAGTGTCTGATAGCAGCTTCTG") := 1.00

(700.000000)

spy : S dna(1, "AACTGGTTACCTGCCGTGAGTAAATTAAAA...ACTAAATACTTTAACCAATATAGGCATA") := 1.00

(700.000000)

spy : S dna(2, "GCGCACAGACAGATAAAAATTACAGAGTAC...CATTAGCACCACCATTACCACCACCATC") := 1.00

(700.000000)

spy : S dna(3, "ACCATTACCACAGGTAACGGTGCGGGCTGA...GAAAAAAGCCCGCACCTGACAGTGCGGG") := 1.00

(700.000000)

spy : S dna(4, "CTTTTTTTTTCGACCAAAGGTAACGAGGTA...GAAGTTCGGCGGTACATCAGTGGCAAAT") := 1.00

(700.000000)

spy : S dna(5, "GCAGAACGTTTTCTGCGTGTTGCCGATATT...GCAGGGGCAGGTGGCCACCGTCCTCTCT") := 1.00

(700.000000)

spy : S dna(6, "GCCCCCGCCAAAATCACCAACCACCTGGTG...CATTAGCGGCCAGGATGCTTTACCCAAT") := 1.00

(700.000000)

spy : S dna(7, "ATCAGCGATGCCGAACGTATTTTTGCCGAA...CGCCGCCCAGCCGGGGTTCCCGCTGGCG") := 1.00

(700.000000)

spy : S dna(8, "CAATTGAAAACTTTCGTCGATCAGGAATTT...CCTGCATGGCATTAGTTTGTTGGGGCAG") := 1.00

(700.000000)

spy : S dna(9, "TGCCCGGATAGCATCAACGCTGCGCTGATT...GTCGATCGCCATTATGGCCGGCGTATTA") := 1.00

(700.000000)

import.txt : 10 lines read in 0.001s.

kindle

/kindle(string)

This command loads a runtime enviroment from a previously saved binary format. The only accepted term

is the path of the folder in which the saving was done. Using kindle and freeze are more efficient than
load and save since it use a direct binary format instead of an intermediary text format that would need
to be parsed. However, it is not possible to edit the knowledge with a text editor.

knows

/knows(symbol|string|guid)

31



Check if an elemental object is present on the runtime using its alias (when the argument is a symbol) or
its GUID (when the argument is a string or a guid). In the following example, we modify the car.range

knowledge to specify an alias for the elemental object that will get created:

1 car.range {

2
3 alias = crange

4
5 } {

6
7 (ford(focus),76);

8 (tesla(model_s),<210|315>);

9 (tesla(model_x),<237|289>);

10 (chevy(bolt),238);

11 (nissan(leaf),107);

12
13 }

We can then use that alias with the /knows command:

?- /knows(c.range)

no

?- /knows(crange)

yes

list

/list

This command generates a list of all the elemental objects presents on the substrate. Each of the output
lines, will contains, in order, the GUID, the class, label and, if available, the alias of each elementals:

?- /list

list : 288a77db-bab2-1748-38af-892fcf18d112 MRKCLettered blobs

list : bf006e31-4bd4-c348-a1a7-0449fb0a167f MRKCLettered car.range (crange)

list : 1bb328bb-4938-8a43-9db0-2a1685acc19b MRKCLettered color

list : 3cfc2da3-8728-0d49-22a0-761d19af28bb MRKCLettered gameboy.color

list : c9928201-4dbd-5e4d-bab7-ee9e13c771dc MRKCLettered identifiers

list : 47d3366d-5794-0949-d7a4-f7e462dfaa24 MRKCBFSolver lst.print

list : 966b0df2-7010-6542-5f83-5cedb64afadb MRKCBFSolver maybe_rainbow

list : 4048e8be-8adc-0b4a-b880-4968dbaff277 MRKCBFSolver multiplier

list : 9a5d0527-34d8-ee44-3f9d-7a8522d51cc0 MRKCLettered product

list : 46d90c88-339d-fa40-da96-3cf068763eca MRKCLettered product

list : 87240913-e8a1-9e43-3a9c-4b9f47e15b27 MRKCBFSolver product.g

list : aa7f7a44-d894-c54d-db96-c537d7fb117c MRKCLettered quotes

list : cfff6ad5-17ce-db43-3d8b-9855d8001539 MRKCRandomizer rand

list : dd875f1a-9596-a649-7fbb-09420e20396f MRKCBFSolver surely_raining

list : 6d4e5104-22a2-ee43-3eb3-073f45b08a1e MRKCLettered weather

list : cb6a0d33-0000-0644-f89a-c7e678060aff MRKCLettered weather2

list : 45f63bd5-b824-594f-e990-1487247ef64d MRKCLettered yearly_stats

list : 17 elementals listed in 0.000s

32



load

/load(string+)

The load command allows knowledge to be loaded from (properly formatted) text files. All terms in the
predicate are expected to be strings.

?- /load("./samples/manual.fizz")

load : loading ./samples/manual.fizz ...

load : loaded ./samples/manual.fizz in 0.011s

?- @gameboy.color(:color)

-> ( {r = 0.509803, g = 0.784313, b = 0.294117} ) := 1.00 (0.001) 1

-> ( {r = 0.325490, g = 0.670588, b = 0.392156} ) := 1.00 (0.001) 2

-> ( {r = 0.164705, g = 0.549019, b = 0.349019} ) := 1.00 (0.001) 3

-> ( {r = 0, g = 0.294117, b = 0.282352} ) := 1.00 (0.001) 4

If any of the files to be loaded have already been loaded, they will each be unloaded before being re-loaded.
See the command unload (Section 4.4 on page 36) to manually unload the knowledge from a given set of
files.

reload

/reload(string+)

The reload command allows knowledge to be re-loaded from (properly formatted) text files. All terms in
the predicate are expected to be strings.

?- /load("./etc/samples/manual.fizz")

load : loading ./etc/samples/manual.fizz ...

load : loaded ./etc/samples/manual.fizz in 0.018s

?- /reload("./etc/samples/manual.fizz")

reload : unloading ./etc/samples/manual.fizz ...

reload : unloaded ./etc/samples/manual.fizz in 0.003s

reload : loading ./etc/samples/manual.fizz ...

reload : loaded ./etc/samples/manual.fizz in 0.018s

poke

/poke(symbol|string|guid,symbol,term)

The poke command allows the properties of an elemental object to be written. For example, in the case
of the rand elemental as defined in Section 2.5 on page 8, we can change the value of its min properties as
follows:

?- /poke(rand,min,1545)

?- /peek(rand,min)

peek : min = 1545

In this example, as in the one for the /peek command, we have used the label of the elemental to identify
it. If there are more than one elemental responding to the same label, they will all receive and process the
poke. In such situation, we should have use the GUID of the elemental to only target a single one.

33



save

/save(string,symbol*)

The save command allows knowledge to be saved to a (properly formatted) text file, allowing it to be re-
loaded at a later time. The command supports saving all knowledges or a selection based on their labels. To
save all existing knowledges currently in the runtime environment, you only need to provide the name of the
text file to be created:

?- /save("all.fizz")

save: completed in 0.141s.

If we wanted to save only the weather knowledges, we would do:

?- /save("weather.fizz",weather)

save: completed in 0.04s.

All terms except the first one are expected to be symbols.

scan

/scan

The scan command will keep printing statistics on the runtime environment until none of the statistics
changes in the substrate:

scan : e:11 k:7 s:2 p:7 u:3.49 t:11 q:3945 r:4384 z:0

scan : e:11 k:7 s:2 p:7 u:3.73 t:1 q:4471 r:5069 z:0 (qps:2191.7 rps:2854.2)

scan : e:11 k:7 s:2 p:7 u:3.98 t:4 q:4995 r:5793 z:0 (qps:2071.1 rps:2861.7)

scan : e:11 k:7 s:2 p:7 u:4.23 t:1 q:5503 r:6498 z:0 (qps:2056.7 rps:2854.3)

scan : e:11 k:7 s:2 p:7 u:4.48 t:2 q:6138 r:7401 z:0 (qps:2529.9 rps:3597.6)

scan : e:11 k:7 s:2 p:7 u:5.00 t:3 q:6843 r:8541 z:0 (qps:0.0 rps:3666.7)

scan : e:11 k:7 s:2 p:7 u:5.25 t:1 q:7789 r:9452 z:0 (qps:3814.5 rps:3673.4)

scan : e:11 k:7 s:2 p:7 u:5.50 t:4 q:8790 r:10426 z:0 (qps:3956.5 rps:3849.8)

The breakdown of the statistic is identical to the stats command with the addition of qps and rps which
are respectively queries per seconds and replies per seconds.

spy

/spy(append,symbol+)

/spy(remove,symbol+)

Instructs the runtime to start or stop printing any events (queries, replies, ...) related to any of the knowledge
labels provided as arguments. Spying is a handy way to see what is happening within the runtime and can
be extremly useful to debug. In the following example, we spy on the gameboy.color knowledge then submit
a query:

?- /spy(append,gameboy.color)

spy : observing gameboy.color

?- @gameboy.color({r = :r?[gt(0.1),lt(0.4)], g = :g, b = :b})

spy : [1589955735.839] Q @gameboy.color(:color) (14.999948)

spy : [1589955735.839] R gameboy.color({r = 0.509803, g = 0.784313, b = 0.294117}) (14.999855)

-> ( {r = 0.509803, g = 0.784313, b = 0.294117} ) := 1.00 (0.000) 1

34



spy : [1589955735.839] R gameboy.color({r = 0.325490, g = 0.670588, b = 0.392156}) (14.999855)

spy : [1589955735.839] R gameboy.color({r = 0.164705, g = 0.549019, b = 0.349019}) (14.999855)

-> ( {r = 0.325490, g = 0.670588, b = 0.392156} ) := 1.00 (0.000) 2

spy : [1589955735.839] R gameboy.color({r = 0, g = 0.294117, b = 0.282352}) (14.999855)

-> ( {r = 0.164705, g = 0.549019, b = 0.349019} ) := 1.00 (0.001) 3

-> ( {r = 0, g = 0.294117, b = 0.282352} ) := 1.00 (0.001) 4

Outputs from spying will always be prefixed with spy, followed by a timestamp after the colon. The following
character indicates the type of the observed event:

Q a query.
R a reply.
S a statement.
T a query is being scrapped.

stats

/stats

Print to the console some basic statistic about what is happening in the runtime:

?- /stats

stats : e:2 k:1 s:0 p:0 u:1.29 t:1 q:0 r:0 z:0

The breakdown of the statistic is the following:

e current number of elemental objects in the substrate.
k total number of knowledges on the substrate.
s total number of statements on the substrate.
p total number of prototypes on the substrate.
u up time (in seconds) of the runtime.
t elapsed time (in miliseconds) it took for the statistics to be collected.
q total number of queries posted on the substrate.
r total number of replies (in statements) posted on the substrate.
z total number of statement posted (without query) on the substrate.

tells

/tells(symbol|string|guid,functor|symbol)

Sends a message (in the form of a functor or a symbol) to an elemental object identified by its label, alias
or GUID, the first argument. Not all elemental object can handle message. If the object is identified by its
label, all objects with the same label will receive the message.

?- /tells(some.obj,do(this,45))

trace

/trace(symbol,string?)

The trace command supports controlling the builin tracing facility, which can be useful when debugging.
The first term, a symbol specifies the tracing command to be executed:

35



on turn the tracing ON.
off turn the tracing OFF.
print print to the console all recorded inference traces.
clear clear all previously recorded inference traces.
save save all previously recorded inference traces to a

text file whoes path is provided as the second term.

Here’s an example:

?- /trace(on)

trace - started

?- #surely_raining(:x)

-> ( paris ) := 0.80 (0.001) 1

-> ( mawsynram ) := 1.00 (0.001) 2

?- /trace(print)

Q: #surely_raining(:x)

Q: @weather(:x, rain) = <0.700000|1>

R: weather(paris, rain) {stamp = 1507093154.766867} := 0.80

R: weather(mawsynram, rain) {stamp = 1507093176.743262} := 1.00

R: surely_raining(paris) := 0.80

R: surely_raining(mawsynram) := 1.00

Q: @weather(paris, sunny)

Q: @weather(mawsynram, sunny)

As shown above, the trace output render hierarchy by using tabulations. Please note that the tracing doesn’t
record primitive calls nor self predicates.

unload

/unload(string+)

The unload command allows knowledge loaded from a file to be unloaded. All terms in the predicate are
expected to be strings.

?- /load("./samples/manual.fizz")

load : loading ./samples/manual.fizz ...

load : loaded ./samples/manual.fizz in 0.011s

?- @gameboy.color(:color)

-> ( {r = 0.509803, g = 0.784313, b = 0.294117} ) := 1.00 (0.001) 1

-> ( {r = 0.325490, g = 0.670588, b = 0.392156} ) := 1.00 (0.001) 2

-> ( {r = 0.164705, g = 0.549019, b = 0.349019} ) := 1.00 (0.001) 3

-> ( {r = 0, g = 0.294117, b = 0.282352} ) := 1.00 (0.001) 4

?- /unload("./samples/manual.fizz")

unload : unloading ./samples/manual.fizz ...

unload : unloaded ./samples/manual.fizz in 0.000s

use

/use(string+)

The use command allows for one or more module(s) (shared library) to be loaded. All terms in the predicate
are expected to be strings. Once loaded, the module contents will be available (e.g. elemental classes,
primitives). A loaded module cannot be unloaded.

36



?- /use("modLGR")

use : loading ./mod/lnx/x64/modLGR.so ...

use : loaded ./mod/lnx/x64/modLGR.so in 0.001s

?- /use("./modLGR.so")

use : sorry, ./modLGR.so doesn’t exists

When no extension is given, the command assumes the module to be loaded is located in the fizz modules
folder that correspond to the architecture used by the host computer.

wipe

/wipe

The wipe command will cause the runtime enviroment to be cleared of all existing elementals objects. The
state of the runtime will be similar to the state at of the runtime when the executable is started.

peek

/peek(symbol|string|guid,symbol)

The peek command allows the properties of an elemental object to be read. For example, if we have a rand

elemental as defined in Section 2.5 on page 8, we can read the value of its min properties as follows:

?- /peek(rand,min)

peek : min = 1550

5 Primitives

This Section details the primitives provided by the runtime. For each one, expected (and optional) arguments
are described and for most a use case examples is given. All primitives are grouped under related categories.

5.1 Arithmetic

This section contains all the primitives that deal with basic arithmetic.

add

add(number|variable,number|variable,number|variable)

This primitive will unify or bind the sum of its two first terms with the third. For example:

?- add(4,3,:x)

-> ( 7 ) := 1.00 (0.001) 1

If the third term is a number or a variable bound to a number, one of the first terms can be an unbound
variable. In that case the primitive will find the right value to make the addition valid as seen in the example
below:

?- add(4,:x,7)

-> ( 3 ) := 1.00 (0.000) 1

37



div

div(number|variable,number|variable,number|variable)

This primitive will unify or bind the division of the first term by the second with the third. For example:

?- div(10,3,:x)

-> ( 3.333333 ) := 1.00 (0.000) 1

If the third term is a number or a variable bound to a number, one of the first terms can be an unbound
variable. In that case the primitive will find the right value to make the division valid as seen in the following
example:

?- div(:x,3,3.3333333)

-> ( 10.000000 ) := 1.00 (0.000) 1

div.int

div.int(number|variable,number|variable,number|variable)

This primitive will unify or bind the integer division of the first term by the second with the third. For
example:

?- div.int(37,6,:x)

-> ( 6 ) := 1.00 (0.001) 1

If the third term is a number or a variable bound to a number, one of the first terms can be an unbound
variable. In that case the primitive will find any values that will make the division valid as seen in the
following example:

?- div.int(:v,6,5)

-> ( 30 ) := 1.00 (0.001) 1

-> ( 31 ) := 1.00 (0.001) 2

-> ( 32 ) := 1.00 (0.001) 3

-> ( 33 ) := 1.00 (0.001) 4

-> ( 34 ) := 1.00 (0.002) 5

-> ( 35 ) := 1.00 (0.002) 6

inv

inv(number|variable,number|variable)

This primitive will unify or bind the inverse value of the first term with the second. For example:

?- inv(4,:x)

-> ( -4 ) := 1.00 (0.000) 1

?- inv(:x,4)

-> ( -4 ) := 1.00 (0.000) 1

38



max

max(number+,number|variable)

max(list,number|variable)

This primitive will unify its last term with the maximum value in all its other terms. If the primitive as only
two terms and the first term is a list, the maximum value in the list will be unified with the second term.
For example:

?- max(3,2,-2,5,:min)

-> ( 5 ) := 1.00 (0.000) 1

?- max([3,2,-2,5],:min)

-> ( 5 ) := 1.00 (0.000) 1

min

min(number+,number|variable)

min(list,number|variable)

This primitive will unify its last term with the minimum value in all its other terms. If the primitive as only
two terms and the first term is a list, the minimum value in the list will be unified with the second term.
For example:

?- min(3,2,-2,5,:min)

-> ( -2 ) := 1.00 (0.000) 1

?- min([3,2,-2,5],:min)

-> ( -2 ) := 1.00 (0.000) 1

mod

mod(number,number,number|variable)

This primitive will unify or bind results from performing an integer division between the first two terms with
the third. For example:

?- mod(9,2,:v)

-> ( 1 ) := 1.00 (0.000) 1

?- mod(8,2,:v)

-> ( 0 ) := 1.00 (0.000) 1

The primitive doesn’t support the first or second term as unbound variables.

mul

mul(number|variable,number|variable,number|variable)

This primitive will unify or bind the multiplication of the first two terms with the third. For example:

?- mul(10,3,:x)

-> ( 30 ) := 1.00 (0.000) 1

If the third term is a number or a variable bound to a number, one of the first terms can be an unbound
variable. In that case the primitive will find the right value to make the multiplication valid as seen in the
following example:

39



?- mul(10,:x,4)

-> ( 0.400000 ) := 1.00 (0.000) 1

sim

sim(number,number,number|variable)

This primitive will unify its third term with a value representing the similarity between the first two terms.
For example:

?- sim(3.21,3.33,:s)

-> ( 0.785714 ) := 1.00 (0.000) 1

?- sim(3.21,10,:s)

-> ( -0.743261 ) := 1.00 (0.000) 1

?- sim(3.21,-100,:s)

-> ( -0.980808 ) := 1.00 (0.000) 1

?- sim(3.21,2.211,:s)

-> ( 0.000500 ) := 1.00 (0.000) 1

sub

sub(number|variable,number|variable,number|variable)

This primitive will unify or bind the second term subtracted from the first one with the third. For example:

?- sub(10,4,:x)

-> ( 6 ) := 1.00 (0.000) 1

If the third term is a number or a variable bound to a number, one of the first terms can be an unbound
variable. In that case the primitive will find the right value to make the subtraction valid as seen in the
following example:

?- sub(10,:x,4)

-> ( 6 ) := 1.00 (0.000) 1

sum

sum(number+,number|variable)

This primitive will unify or bind the sum of all terms with the last term. For example:

?- sum(3,3,6,7,:sum)

-> ( 19 ) := 1.00 (0.000) 1

?- sum(3,3,6,7,19)

-> ( ) := 1.00 (0.000) 1

Countrary to the primitive add, this primitive does not support having any term unbound but the last one.

5.2 Basic

Under this grouping are all the primitives that provide very basic - and in most cases essentials - capabilities
to the runtime.

40



any

any(term+,variable)

This primitive will unify its last term with the first term that isn’t a unbounded variable. For example:

?- set(:V,4), any(:V,2,:d)

-> ( 4 ) := 1.00 (0.000) 1

?- any(:V,2,:d)

-> ( 2 ) := 1.00 (0.000) 1

assert

assert(functor,number,frame?)

assert(symbol,list,number,frame?)

The assert primitive allows for a statement to be added to an existing knowledge. If no elemental object
capable of handling it exists, the runtime will instantiate one. The following example shows how a new
statement is added at runtime to the weather knowledge:

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.001) 1

?- assert(weather(seattle,rain),0.6)

-> ( ) := 1.00 (0.001) 1

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.001) 1

-> ( rain ) := 0.60 (0.001) 2

The optional third term to the primitive is a frame which (as we have seen in section 2.2 on page 3) provides
the properties of the statement. Here’s how we could timestamp each statement when asserting them:

?- assert(weather(paris,rain),0.8,{stamp = %now})

-> ( ) := 1.00 (0.000) 1

?- assert(weather(seattle,sunny),0.2,{stamp = %now})

-> ( ) := 1.00 (0.000) 1

?- assert(weather(london,fog),0.9,{stamp = %now})

-> ( ) := 1.00 (0.000) 1

?- assert(weather(mawsynram,rain),1,{stamp = %now})

-> ( ) := 1.00 (0.000) 1

?- assert(weather(honolulu,snow),0,{stamp = %now})

-> ( ) := 1.00 (0.000) 1

When a statement is asserted, it will be broadcasted in the substrate. See primitive repeal for the inverse
function.

break

break(boolean)

The primitive break will prematurely end an ongoing inference when its term unify to the boolean value
true. The call will always evaluate to a truth value of 1.0.

41



?- console.puts(a), break(1), console.puts(b)

a

-> ( ) := 1.00 (0.000) 1

?- console.puts(a), break(0), console.puts(b)

a

b

-> ( ) := 1.00 (0.000) 1

See the sample leibniz.fizz for an example of its use.

break.not

break.not(boolean)

The primitive break will prematurely end an ongoing inference when its term unify to the boolean value
false. The call will always evaluate to a truth value of 1.0.

?- console.puts(a), break.not(0), console.puts(b)

a

-> ( ) := 1.00 (0.000) 1

?- console.puts(a), break.not(1), console.puts(b)

a

b

-> ( ) := 1.00 (0.000) 1

bundle

bundle(functor,number,frame,number?)

bundle(symbol,list,number,frame,number?)

Like the assert primitive, bundle allows for a statement to be added to an existing knowledge. It however
provides a way for the statements provided during consecutive (or concurrent) calls to be grouped into a
single knowledge. Once a specified number of statements have been reached, or if the time elapsed since the
last addition of a statement reaches a timeout value, the knowledge will be asserted into the substrate. In
the following example, we define a procedural knowledge which when triggered (by any line.f statement)
will assert a frag statement bundled within knowledges of 1024 statements in size:

1 import.frag {

2
3 () :- @line.f(:i,:s), bundle(frag(:i,:s),1,{},1024), hush;

4
5 }

If the last term isn’t given, the default value specified in the runtime settings (bundle.len) will be used.

cache

cache(peek,atom,term|variable,term?)

cache(poke,atom,term)

cache(push,atom,term)

cache(pull,atom,term|variable)

cache(drop,atom)

42



This primitive provides a synchronized access to a global storage area (host only) where terms can be stored
and retreived based on a key (any atom can be a key). When the first term unifies to the symbol peek, the
value associated with the key will be unified against the third term. If the key doesn’t exists and a fourth
term was provided to the primitive, that value will be unified against the third term instead. When the first
term unifies to the symbol poke, the second term will either set or replace the value stored for the provided
key. If the first term is drop, any value stored for the key will be removed from the cache. For example:

?- cache(poke,hello,42.5)

-> ( ) := 1.00 (0.000) 1

?- cache(peek,hello,:v)

-> ( 42.500000 ) := 1.00 (0.000) 1

?- cache(peek,hell0,:v,5)

-> ( 5 ) := 1.00 (0.000) 1

If the first term is push, the key will be treated as referencing a queue, and the third term will be pushed
onto the queue. When the first term is pull, the next term on the queue will be removed from it and unified
to the third term of the primitive. If the queue is empty or if the key doesn’t exist, the primitive call will
evaluate to a truth value of 0. For example:

?- rng.span(<0|1>,0.1,:I), cache(push,q,:I)

-> ( ) := 1.00 (0.001) 1

?- cache(pull,q,:v)

-> ( 0 ) := 1.00 (0.000) 1

?- cache(pull,q,:v)

-> ( 0.100000 ) := 1.00 (0.000) 1

?- cache(pull,q,:v)

-> ( 0.200000 ) := 1.00 (0.000) 1

?- cache(pull,q,:v)

-> ( 0.300000 ) := 1.00 (0.000) 1

If the first term is a functor instead of just a symbol, the first atom in its terms will be used as a key
representing a different caching context than the default one. For example:

?- cache(poke(a),v,1)

-> ( ) := 1.00 (0.000) 1

?- cache(poke(b),v,1)

-> ( ) := 1.00 (0.000) 1

?- cache(poke(c),v,2)

-> ( ) := 1.00 (0.000) 1

?- cache(poke(0),v,3)

-> ( ) := 1.00 (0.000) 1

?- cache(peek(a),v,:v)

-> ( 1 ) := 1.00 (0.000) 1

?- cache(peek(b),v,:v)

-> ( 1 ) := 1.00 (0.000) 1

?- cache(peek(c),v,:v)

-> ( 2 ) := 1.00 (0.000) 1

?- cache(peek(0),v,:v)

-> ( 3 ) := 1.00 (0.000) 1

cease

cease(symbol+)

cease(list)

43



This primitive can be used to remove one or more elementals from the runtime using their labels. Here’s an
example:

?- spawn(tick,{class = FZZCTicker, tick = 0.5, tick.on.attach = yes})

-> ( ) := 1.00 (0.001) 1

?- /spy(append,tick)

spy : observing tick

spy : [1589697893.355] S tick(9, 1589697893.355115) (15.000000)

spy : [1589697893.856] S tick(10, 1589697893.855659) (15.000000)

spy : [1589697894.355] S tick(11, 1589697894.355373) (15.000000)

spy : [1589697894.855] S tick(12, 1589697894.854866) (15.000000)

spy : [1589697895.356] S tick(13, 1589697895.355578) (15.000000)

spy : [1589697895.855] S tick(14, 1589697895.855147) (15.000000)

spy : [1589697896.355] S tick(15, 1589697896.354837) (15.000000)

?- cease(tick)

spy : [1589697896.856] S tick(16, 1589697896.855403) (15.000000)

spy : [1589697897.355] S tick(17, 1589697897.355099) (15.000000)

spy : [1589697897.856] S tick(18, 1589697897.855685) (15.000000)

spy : [1589697898.355] S tick(19, 1589697898.355348) (15.000000)

spy : [1589697898.855] S tick(20, 1589697898.854917) (15.000000)

spy : [1589697899.356] S tick(21, 1589697899.355585) (15.000000)

spy : [1589697899.855] S tick(22, 1589697899.855141) (15.000000)

spy : [1589697900.355] S tick(23, 1589697900.354838) (15.000000)

spy : [1589697900.855] S tick(24, 1589697900.855344) (15.000000)

spy : [1589697901.355] S tick(25, 1589697901.355057) (15.000000)

spy : [1589697901.856] S tick(26, 1589697901.855657) (15.000000)

spy : [1589697902.355] S tick(27, 1589697902.355204) (15.000000)

spy : [1589697902.855] S tick(28, 1589697902.854851) (15.000000)

spy : [1589697903.356] S tick(29, 1589697903.355564) (15.000000)

spy : [1589697903.855] S tick(30, 1589697903.855035) (15.000000)

spy : [1589697904.356] S tick(31, 1589697904.355737) (15.000000)

-> ( ) := 1.00 (0.000) 1

change

change([functor,number?,frame?],[functor,number?,frame?])
change([symbol,list,number?,frame?],[symbol,list,number?,frame?])

The change primitive combines a repeal followed by an assert. In the following example, we use it to
replace an earlier version of the statement with one with the current time:

?- change([city.weather.latest(:id,_)],[city.weather.latest(:id,%now)])

Both terms are expected to be lists, describing the statement to be repealed and the statement to be asserted
(as per the primitives repeal and assert).

console.exec

console.exec(atom|functor)

This primitive will trigger the background execution of a console’s command. It can be used, for instance
by an elemental to trigger the frequent saving of all (or selected) knowledge during the execution. Here’s an
example:

44



?- console.exec(bye)

-> ( ) := 1.00 (0.000) 1

bye!

console.gets

console.gets(variable)

This primitive will read a line from the console. Since the user will be prompted to enter a string as a
synchronous operation, calling this primitive will only work when offloaded. For example:

?- &console.gets(:x)

>- hello world!

-> ( "hello world!" ) := 1.00 (5.105) 1

console.puts

console.puts(term+)

This primitive will output the concatenation of the terms in the console. For example:

?- console.puts(Hello,"", world","!")

Hello, world!

cpy

cpy(term,variable)

This primitive will unify its last term with a copy of the first term where every unbound variables found in
the first term will be replaced by a different instance of the variable. This is make clear in the following
example: the difference between set and cpy can be observed as the term bound to the variable l doesn’t
contains the values bound to the variables A and B after cpy was called, contrasting with the effectset had:

?- set(:L,[:A,:B]), set(:L,:l), set(:A,1), set(:B,2)

-> ( [1, 2] ) := 1.00 (0.000) 1

?- set(:L,[:A,:B]), cpy(:L,:l), set(:A,1), set(:B,2)

-> ( [:A, :B] ) := 1.00 (0.000) 1

cut.if

cut.if(number)

This primitive will have the same effect as using the caret (^) after a predicate, but only if its only term

unifies with the value 1.

cut.if.not

cut.if.not(number)

This primitive will have the same effect as using the caret (^) after a predicate, but only if its only term

unifies with the value 0.

45



declare

declare(list+)

declare(functor,number?,frame?)

declare(symbol,list,number?,frame?)

This primitive will broadcast statements into the runtime environment built from its terms. A functor (or
a symbol plus a list) followed by an optional truth value and an optional frame is requiered for the primitive

to create a statement. Multiple statements can be broadcasted if they are enclosed in lists. For example:

?- /spy(append,blah)

spy : observing blah

?- declare(blah(23,hello))

spy : S blah(23, hello) := 1.00

-> ( ) := 1.00 (0.001) 1

?- declare([blah(23,hello)],[blah(25,bye)])

spy : S blah(23, hello) := 1.00

spy : S blah(25, bye) := 1.00

-> ( ) := 1.00 (0.002) 1

?- declare([blah(23,hello),0.8],[blah(25,bye),0.5])

spy : S blah(23, hello) := 0.80

spy : S blah(25, bye) := 0.50

-> ( ) := 1.00 (0.002) 1

?- declare([blah(23,hello),0.8],[blah(25,bye),0.5,{stamp = %now}])

spy : S blah(23, hello) := 0.80

spy : S blah(25, bye) := 0.50 {stamp = 1507446180.615446}

-> ( ) := 1.00 (0.002) 1

?- declare([[blah(23,hello),0.8],[blah(25,bye),0.5,{stamp = %now}]])

spy : S blah(23, hello) := 0.80

spy : S blah(25, bye) := 0.50 {stamp = 1507446211.905603}

-> ( ) := 1.00 (0.000) 1

If multiple statements have the same label, they will be grouped according to the runtime environment’s
sspr value and broadcasted together.

define

define(symbol,list,list,list)

The define primitive allows for a prototype to be added to the knowledge contained on the substrate. If
no elemental object capable of handling it exists, the runtime will instantiate one. The following example
defines two prototypes which together print the content of a list given as input:

?- define(lst.print,[[]],[cut],[[[primitive],true()]])

-> ( ) := 1.00 (0.000) 1

?- define(lst.print,[[:h|:t]],[],[[[primitive],console.puts(:h)],[[],[lst.print,[:t]]]])

-> ( :h , :t ) := 1.00 (0.000) 1

?- #lst.print([a,b,c])

a

b

c

-> ( ) := 1.00 (0.002) 1

This would have had the same result as defining the lst.print knowledge as:

46



1 lst.print {

2
3 ([]) ^ :- true;

4 ([:h| :t]) :- console.puts(:h), #lst.print(:t);

5
6 }

The first term is the label of the prototype, followed by a list containing the entrypoint. The third term is
a list of options ( for example the symbol cut to turns the prototype into a cut one). The last term is a list
containing the definitons of all the predicates that makes up the prototype. Each of the predicate is it-self
defined within a list. As shown in the above example, this list is expected to have two elements. The first
one is a list of options (symbols such as negate, primitive, cut, offload, trigger. The list can also
contain a range term and a frame term. The second term can either be a functor or a list containing the
label of the predicate and a list of the predicate’s terms.

See the primitive revoke for the inverse effect in Section 5.2 on page 51.

drop

drop(symbol)

The drop primitive allows for a property of the calling elemental object to be removed. Please note that
offloading the execution of the primitive will not work.

exec

exec(symbol,list)

exec(functor)

This primitive can be used to execute an arbitraty primitive specified by a symbol and a list of terms, or as
a functor. Here’s an example:

?- exec(add(2,3,:v))

-> ( 5 ) := 1.00 (0.001) 1

?- exec(add,[2,3,:v])

-> ( 5 ) := 1.00 (0.000) 1

false

false

false(boolean|variable)

Calling this primitive with no term will cause the on-going inference to fail by resolving to a truth value of
0. When used with a single term it will either test of a value is false or bind a variable to the value false.

forget

forget(symbol+)

The forget primitive will cause all elemental objects with the label given in its terms to be removed from
the substrate.

?- forget(product,product.g)

-> ( ) := 1.00 (0.000) 1

47



fuzz

fuzz(number)

The fuzz primitive will resolve with a truth value during inference the value passed as term:

?- fuzz(0.2)

-> ( ) := 0.20 (0.000) 1

hush

hush

The primitive hush will husher the ongoing inference. No statement will be published and no query will be
answered. This is useful mainly in situations where a prototype is activated by a trigger predicate.

hush.if

hush.if(number)

Just like hush, this primitive will husher the ongoing inference, but only if its only term unifies with the
value 1.

hush.if.not

hush.if.not(number)

Just like hush, this primitive will husher the ongoing inference, but only if its only term unifies with the
value 0.

nab

nab(term,variable)

This primitive will unify its second term with an unescaped version of the first term.For example:

?- set(:B,5), nab(\[1,a,:B],:l)

-> ( [1, a, 5] ) := 1.00 (0.000) 1

now

now(number|variable)

This primitive will unify and/or substitute its sole term with the current host time (UTC, expressed in
seconds since Unix epoch).

peek

peek(symbol,variable|term)

The peek primitive allows for a property of the calling elemental object to be read and unified and/or
substitued with the second term. If the label provided as the first term is not a known property, the call will
evaluate to a truth value of 0.0. For example, the following knowledge will multiply a value by a factor read
from its properties:

48



1 multiplier { factor = 2 } {

2
3 (:v,:v2) :- peek(factor,:f), mul(:v,:f,:v2);

4
5 }

Using the console command /poke we can modify the value of the knowledge property on the fly as shown
here:

?- #multiplier(3,:v)

-> ( 6 ) := 1.00 (0.002) 1

?- /poke(multiplier,factor,3)

?- #multiplier(3,:v)

-> ( 9 ) := 1.00 (0.002) 1

Accessing properties during inferences can allow for an easier reuse of knowledge. Please note that this
primitive will not work when offloaded.

poke

poke(symbol,term)

The poke primitive allows for a property of the calling elemental object to be written with the second term

as value. If the label provided as the first term is not a known property or if it is a reserved label (like class
guid label alias), the call will evaluate to a truth value of 0.0. Changing the value of a property during
inference supports allow for the elemental to save states. The following example uses two properties to cycle
through a list of words to only return a different word at each inference:

1 wword {

2
3 index = 0,

4 words = [when, why, where, how]

5
6 } {

7
8 // the prototype will reset the index to 0 if its value is the size of the words list

9 (:w) :- peek(index,:i),

10 peek(words,:l),

11 lst.length(:l,:s),

12 eq(:i,:s),

13 poke(index,0),

14 false;

15
16 // the main prototype

17 (:w) :- peek(index,:i),

18 peek(words,:l),

19 lst.item(:l,:i,:w),

20 add(:i,1,:i2),

21 poke(index,:i2);

22
23 }

Just like with the peek primitive, offloading the execution of the primitive will not work.

49



prune

prune

The primitive prune will instruct the solver to prune any other concurrent solving or possible backtracking
steps.

pull

pull(symbol,variable|term)

The pull primitive allows for a property of the calling elemental object to be treated as a queue from which
a value can be pulled, unified and/or substitued with the second term. If the label provided as the first term
is not a known property or if the queue is empty, the call will evaluate to a truth value of 0.0. For example,
the following knowledge accumulate numbers in a queue and get the maximum value on demand:

1 accumulator { values = [] } {

2
3 (dec,:v) :- ?pull(values,:h), any(:h,0,:v);

4 (acc,:v) :- push(values,:v);

5 (max,:m) :- lst.max($values,:m);

6
7 }

See the primitive push for the inverse effect.

?- #accumulator(acc,1)

-> ( ) := 1.00 (0.001) 1

?- #accumulator(acc,2)

-> ( ) := 1.00 (0.001) 1

?- #accumulator(acc,3)

-> ( ) := 1.00 (0.001) 1

?- #accumulator(acc,4)

-> ( ) := 1.00 (0.001) 1

?- #accumulator(max,:m)

-> ( 4 ) := 1.00 (0.001) 1

?- #accumulator(dec,:v)

-> ( 1 ) := 1.00 (0.001) 1

Please note that this primitive will not work when offloaded.

push

push(symbol,term)

The push primitive allows for a property of the calling elemental object to be treated as a queue from which
a value can be pushed onto. If the property already exist and it isn’t a list, the previous value will be stored
first in the queue. Please note that this primitive will not work when offloaded.

repeal

repeal(functor,number)

repeal(symbol,list,number)

50



The repeal primitive allows for a statement to be removed from any existing knowledge. If the functor or
the terms list contains unbound variables, any matching statements will be removed.

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.005) 1

-> ( rain ) := 0.60 (0.008) 2

?- repeal(weather,[seattle,rain],0.6)

-> ( ) := 1.00 (0.000) 1

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.005) 1

Note that the elemental object that was storing the statement will not be detached from the substrate even
if it doesn’t hold any more knowledge.

revoke

revoke(symbol,list,list,list)

The revoke primitive allows for a prototype to be removed from the knowledge contained on the substrate.
It is the reverse action of the primitive define (see Section 5.2 on page 46). Using the example from that
primitive we can remove both prototypes as follow:

?- revoke(lst.print,[[]],[cut],[[[primitive],true()]])

-> ( ) := 1.00 (0.000) 1

?- revoke(lst.print,[[:h|:t]],[],[[[primitive],console.puts(:h)],[[],[lst.print,[:t]]]])

-> ( :h , :t ) := 1.00 (0.000) 1

?- #lst.print([a,b,c])

Note that the elemental object that was storing the prototype will not be detached from the substrate even
if it doesn’t hold any more knowledge.

set

set(term,term)

The set primitive primary use is to assign a value to a variable, but it can also be used to unify terms or
variables. When used in the former case, the order in the terms doesn’t matter as shown in the example
below:

?- set(:x,4)

-> ( 4 ) := 1.00 (0.000) 1

?- set(4,:x)

-> ( 4 ) := 1.00 (0.000) 1

set.if

set.if(term,term,boolean)

The set.if primitive functions as the primitive set but only if its third term is a number which boolean
value is true. If it’s false, it will evaluate to a truth value of 1.0 and the variable will not be bound. For
example:

51



?- set.if(5,:v,1)

-> ( 5 ) := 1.00 (0.000) 1

?- set.if(5,:v,0)

-> ( :v ) := 1.00 (0.000) 1

?- set.if(5,:v,0), set(6,:v)

-> ( 6 ) := 1.00 (0.000) 1

set.if.not

set.if.not(term,term,boolean)

The set.if primitive functions as the primitive set but only if its third term is a number which boolean
value is false. If it’s true, it will evaluate to a truth value of 1.0 and the variable will not be bound. For
example:

?- set.if.not(5,:v,0)

-> ( 5 ) := 1.00 (0.000) 1

?- set.if.not(5,:v,1)

-> ( :v ) := 1.00 (0.000) 1

shoot

shoot(symbol,list)
shoot(list,list)

This primitive will cause a predicate inquery just like a predicate would, but will not wait for reply. If the
first term is a list, it is supposed to contains the labels of the predicate to be created. The second term

is expected the be the list of terms, to pass as the predicate’s terms. For example, we have the following
knowledge:

1 test {

2
3 (1,:str) :- console.puts(:str);

4 (2,:str) :- str.toupper(:str,:s), console.puts(:s);

5
6 }

We would use the primitive as follow:

?- shoot(test,[2,"hello"])

-> ( ) := 1.00 (0.000) 1

HELLO

?- shoot(test,[1,"hello"])

-> ( ) := 1.00 (0.000) 1

hello

spawn

spawn(symbol,frame)

This primitive can be used to spawn a new elemental into the runtime. The first term of the primitive is the
label of the elemental and the second term is its properties. Here’s an example:

52



?- /spy(append,tick)

spy : observing tick

?- spawn(tick,{class = FZZCTicker, tick = 0.5, tick.on.attach = yes})

-> ( ) := 1.00 (0.001) 1

spy : [1589697647.775] S tick(1, 1589697647.775018) (15.000000)

spy : [1589697648.175] S tick(2, 1589697648.174596) (15.000000)

spy : [1589697648.675] S tick(3, 1589697648.675118) (15.000000)

spy : [1589697649.175] S tick(4, 1589697649.174807) (15.000000)

spy : [1589697649.676] S tick(5, 1589697649.675423) (15.000000)

spy : [1589697650.175] S tick(6, 1589697650.175078) (15.000000)

spy : [1589697650.676] S tick(7, 1589697650.675677) (15.000000)

spy : [1589697651.175] S tick(8, 1589697651.175286) (15.000000)

then

then(number|variable,number|variable,number|variable,number|variable+)

This primitive will unify and/or substitute its last term with the date/time (UTC, expressed in seconds since
Unix epoch) build from the other terms. The first time is expected to be the calendar year, followed by the
month and the day. Following optional terms are, in order: hours, minutes, seconds and miliseconds. For
example:

?- then(:y,:m,:d,%now)

-> ( 2017 , 12 , 14 ) := 1.00 (0.001) 1

?- then(:y,:m,:d,:h,:min,%now)

-> ( 2017 , 12 , 14 , 20 , 12 ) := 1.00 (0.001) 1

?- then(:y,:m,:d,:h,:min,:s,:ms,%now)

-> ( 2017 , 12 , 14 , 20 , 12 , 21 , 713 ) := 1.00 (0.001) 1

?- then(2018,1,1,:new_year)

-> ( 1514764800 ) := 1.00 (0.001) 1

tme.str

tme.str(number|variable,string|variable)

This primitive will unify and/or substitute its terms in between a date/time (UTC, expressed in seconds
since Unix epoch) and a string representation of that date. The first term is expected to be either a number

or a variable and the second either a string or a variable. For example:

?- tme.str(%now,:s)

-> ( "Thu, 22 Feb 2018 06:58:23 GMT" ) := 1.00 (0.000) 1

?- tme.str(:t,"Thu, 22 Feb 2018 06:58:23 GMT")

-> ( 1519282703 ) := 1.00 (0.000) 1

true

true

true(boolean|variable)

Calling this primitive will cause the inference to continue. This is sort of a no-op with limited use, except
to turn a statement into a prototype. When it is used with a single term it will either test if a value is true
or bind a variable to the value true.

53



uny

uny(term,term)

This primitive will unify its first term with its second term without actually performing the unification. If
both terms unifies, then the call will resolve with a truth value of 1. Otherwise the truth value will be 0. For
example:

?- uny(a,a)

-> ( ) := 1.00 (0.000) 1

?- uny(a,b)

-> ( ) := 0.00 (0.000) 1

?- uny(a,:l)

-> ( :l ) := 1.00 (0.000) 1

whisper

whisper(functor,number,frame?)

whisper(symbol,list,number,frame?)

The whisper primitive allows for a statement to be added to an existing knowledge. If no elemental object
capable of handling it exists, the runtime will instantiate one. The following example shows how a new
statement is added at runtime to the weather knowledge:

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.001) 1

?- whisper(weather(seattle,rain),0.6)

-> ( ) := 1.00 (0.001) 1

?- @weather(seattle,:s)

-> ( sunny ) := 0.20 (0.001) 1

-> ( rain ) := 0.60 (0.001) 2

Unlike with assert, when a statement is whispered, it will not be broadcasted in the substrate. See primitive

repeal for the inverse function.

5.3 Comparaisons

All primitives related to comparing two terms are grouped in this category.

aeq

aeq(number,number,number)

This primitive will evaluate to a truth value of 1.0 if its two first terms are almost equal numbers, and 0.0

if they do not. The third term is the maximum allowed difference between the two numbers to be estimated
to be the same. For example:

?- aeq(4.5,4.51,0.01)

-> ( ) := 1.00 (0.001) 1

?- aeq(4.5,4.52,0.01)

-> ( ) := 0.00 (0.000) 1

54



are.different

are.different(term,term)

This primitive will evaluate to a truth value of 1.0 if its two terms do not unify, and 0.0 if they do.

are.same

are.same(term,term)

This primitive will evaluate to a truth value of 1.0 if its two terms do unify, and 0.0 if they don’t.

cmp

cmp(term,term,variable|term)

This primitive will unify or bind the comparison (lesser, greater or equal) between the first two terms with
the third. For example:

?- cmp(4,3,:c)

-> ( 1 ) := 1.00 (0.000) 1

?- cmp(2,3,:c)

-> ( -1 ) := 1.00 (0.000) 1

?- cmp(hello,hello,:c)

-> ( 0 ) := 1.00 (0.000) 1

eq

eq(term,term)

eq(term,term,boolean|variable)

This primitive will evaluate to a truth value of 1.0 if its two terms do unify, and 0.0 if they don’t. It is a
short hand to the are.same primitive. When used with three terms, the primitive will always evaluate to a
truth value of 1.0 if its third term unify with the boolean value coming from the succes of the unification of
the 2 first terms. For example:

?- eq(3,5,:e)

-> ( false ) := 1.00 (0.000) 1

?- eq(3,3,:e)

-> ( true ) := 1.00 (0.000) 1

gt

gt(term,term)

This primitive will evaluate to a truth value of 1.0 if the first term is a number and has a value greater than
the second term, also a number. In all other cases, the primitive will evaluate to 0.0.

gte

gte(term,term)

This primitive will evaluate to a truth value of 1.0 if the first term is a number and has a value greater or
equal to the second term, also a number. In all other cases, the primitive will evaluate to 0.0.

55



lt

lt(term,term)

This primitive will evaluate to a truth value of 1.0 if the first term is a number and has a value lesser than
the second term, also a number. In all other cases, the primitive will evaluate to 0.0.

lte

lte(term,term)

This primitive will evaluate to a truth value of 1.0 if the first term is a number and has a value lesser or
equal to the second term, also a number. In all other cases, the primitive will evaluate to 0.0.

neq

neq(term,term)

neq(term,term,boolean|variable)

This primitive will evaluate to a truth value of 1.0 if its two terms do not unify, and 0.0 if they do. It is a
short hand to the are.different primitive. When used with three terms, the primitive will always evaluate
to a truth value of 1.0 if its third term unify with the boolean value coming from the succes of the unification
of the 2 first terms. For example:

?- neq(3,5,:e)

-> ( true ) := 1.00 (0.000) 1

?- neq(3,3,:e)

-> ( false ) := 1.00 (0.000) 1

5.4 Data

All primitives related to handling data terms are grouped in this category.

daa.avg

daa.avg(data,number|variable)

This primitive will unifies or substitues the second term with the average of all values in the data (the first
term). For example:

?- daa.make(byte,[5,12,245,56],:D), daa.avg(:D,:v)

-> ( 79.500000 ) := 1.00 (0.000) 1

daa.find

daa.find(data,number|range,variable|term)

The primitive daa.find will unifies or substitues its last term with a list of the indices of all the items in
the data (the first term) which unifies with the second term, either a number or a range. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.find(:D,<0|60>,:i)

-> ( [0, 1, 3] ) := 1.00 (0.000) 1

56



daa.format

daa.format(data,symbol|variable)

This primitive will unifies or substitues its last term with the format of the content in its first term, a data.
If the first term isn’t a data, the primitive will evaluate to a truth value of 0. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.format(:D,:f)

-> ( byte ) := 1.00 (0.000) 1

daa.item

daa.item(data,number,variable|term)

This primitive will unifies or substitues its last term with the nth item in first term, a data. If the index of
the item (the second term) is outside of the bounds of the data, the primitive will evaluate to a truth value

of 0. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.item(:D,0,:v)

-> ( 5 ) := 1.00 (0.000) 1

?- daa.make(byte,[5,12,245,56],:D), daa.item(:D,8,:v)

If the second term is an unbound variable, the primitive will enumerate all items in the data and their indices:

?- daa.make(byte,[5,12,245,56],:D), daa.item(:D,:i,:v)

-> ( 0 , 5 ) := 1.00 (0.000) 1

-> ( 1 , 12 ) := 1.00 (0.001) 2

-> ( 2 , 245 ) := 1.00 (0.001) 3

-> ( 3 , 56 ) := 1.00 (0.001) 4

If now only the second term is un unbound variable, the index of the first item unifying the third term will
be bound:

?- daa.make(byte,[5,12,245,56],:D), daa.item(:D,:i,56)

-> ( 3 ) := 1.00 (0.000) 1

daa.length

daa.length(data,number|variable)

This primitive will unifies or substitues its last term with the number of items in its first term, a data. If
the first term isn’t a data, the primitive will evaluate to a truth value of 0. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.length(:D,:l)

-> ( 4 ) := 1.00 (0.000) 1

daa.make

daa.make(symbol,list,term|variable)

The primitive daa.make will unifies or substitues the last term with a new data term. The first term, a
symbol, indicates the expected contents format while the second term is a list of the values to be stored in
the data . For example:

57



?- daa.make(byte,[5,12,245,56],:d)

-> ( ’data(byte,"BQz1OA==") ) := 1.00 (0.000) 1

Supported content formats are: byte, char, bool, uint16, sint16, uint32, sint32, uint64, sint64, real32
and real64.

daa.max

daa.max(data,number|variable,number?|variable?)

When only two terms are given, the primitive will unifies or substitues the second term with the value from
the data (the first term) which have the highest value. If a third term is given, it will be unifies or substitues
with the index of that value. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.max(:D,:v)

-> ( 245 ) := 1.00 (0.000) 1

?- daa.make(byte,[5,12,245,56],:D), daa.max(:D,:v,:i)

-> ( 245 , 2 ) := 1.00 (0.000) 1

daa.member

daa.member(term|variable,data)

This primitive will unifies or substitues its first term with any of the items in its second term, a data. If the
second term isn’t a data, or if the unification of the 1st term fails, the primitive will evaluate to a truth value

of 0. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.member(245,:D)

-> ( ) := 1.00 (0.000) 1

If the first term is an unbound variable, the primitive will enumerate all the items in the data:

?- daa.make(byte,[5,12,245,56],:D), daa.member(:i,:D)

-> ( 5 ) := 1.00 (0.000) 1

-> ( 12 ) := 1.00 (0.001) 2

-> ( 245 ) := 1.00 (0.001) 3

-> ( 56 ) := 1.00 (0.001) 4

daa.min

daa.min(data,number|variable,number?|variable?)

When only two terms are given, the primitive will unifies or substitues the second term with the value from
the data (the first term) which have the lowest value. If a third term is given, it will be unifies or substitues
with the index of that value. For example:

?- daa.make(byte,[5,12,245,56],:D), daa.min(:D,:v)

-> ( 5 ) := 1.00 (0.000) 1

?- daa.make(byte,[5,12,245,56],:D), daa.min(:D,:v,:i)

-> ( 5 , 0 ) := 1.00 (0.000) 1

5.5 Frame

All primitives related to handling frames are grouped in this category.

58



frm.erase

frm.erase(frame,symbol,frame|variable)

This primitive unifies or substitues the last term with the first term after the required label (the second
aterms) have been removed in the frame. If the label isn’t found in the frame, the predicate will still evaluate
to 1.0. For example:

?- frm.erase({a=4,b=5},a,:f)

-> ( {b = 5} ) := 1.00 (0.001) 1

?- frm.erase({a=4,b=5},c,:f)

-> ( {a = 4, b = 5} ) := 1.00 (0.000) 1

frm.fetch

frm.fetch(frame,symbol|variable,term|variable)

frm.fetch(frame,symbol|variable,term|variable,term)

The primitive frm.fetch main purpose is to get the value stored in a frame (the first term) for a given label
(the second term) and unify it with the third term. If a fourth term is provided, it is considered to be the
default value to be used to unify with the third in case the label isn’t found in the frame. For example:

?- frm.fetch({a = 3, b = hello},b,:v)

-> ( hello ) := 1.00 (0.000) 1

If the second term is an unbound variable, the inference engine will list all label/value combinations:

?- frm.fetch({a = 3, b = hello},:l,:v)

-> ( a , 3 ) := 1.00 (0.000) 1

-> ( b , hello ) := 1.00 (0.001) 2

frm.length

frm.length(frame,number|variable)

This primitive will unify or substitue its second term with the length (that is the number of items) in the
frame passed as first term.

?- frm.length({a = 3, b = hello},:l)

-> ( 2 ) := 1.00 (0.000) 1

frm.make

frm.make(list+,frame|variable)

This primitive will unify or substitue its last term with a frame created from a collection of label/value pairs.
For example:

?- frm.make([a,4],[b,"hello"],:f)

-> ( {a = 4, b = "hello"} ) := 1.00 (0.000) 1

?- frm.make([[a,4],[b,"hello"]],:f)

-> ( {a = 4, b = "hello"} ) := 1.00 (0.000) 1

59



frm.store

frm.store(frame,symbol|variable,term,frame|variable)

This primitive unifies or substitues the last term with the first term after the required label/value pair (the
second and third terms) have been updated or inserted in the frame. For example:

?- frm.store({a = 3, b = hello},c,"world!",:o)

-> ( {a = 3, b = hello, c = "world!"} ) := 1.00 (0.000) 1

frm.empty

frm.empty(frame)

The primitive frm.empty will resolve with a truth value of 1 if its sole term is an empty frame. For example:

?- frm.empty({})

-> ( ) := 1.00 (0.000) 1

?- frm.empty({a = 1})

-> ( ) := 0.00 (0.001) 1

frm.label

frm.label(frame,symbol|variable)

With this primitive, it is possible to check if a given label exists in the frame. It will resolve with a truth

value of 1 if the label exists. 0, otherwise:

?- frm.label({a=1,b=2,c=3},a)

-> ( ) := 1.00 (0.000) 1

?- frm.label({a=1,b=2,c=3},d)

-> ( ) := 0.00 (0.000) 1

If the second term is an unbound variable, the inference will generate as many solutions as there are pairs
in the frame:

?- frm.label({a=1,b=2,c=3},:label)

-> ( a ) := 1.00 (0.000) 1

-> ( b ) := 1.00 (0.000) 2

-> ( c ) := 1.00 (0.000) 3

frm.labels

frm.labels(frame,list|variable)

This primitive will unify or substitue its second term with a list of all the labels of the label/value pairs in
the frame.

?- frm.labels({a=1,b=2,c=3},:labels)

-> ( [a, b, c] ) := 1.00 (0.000) 1

When the second term is a list of symbols, the list ordering doesn’t have to match the order in which the
frame label/value pairs have been specified:

60



?- frm.labels({a=1,b=2,c=3},[a,b,c])

-> ( ) := 1.00 (0.000) 1

?- frm.labels({a=1,b=2,c=3},[b,a,c])

-> ( ) := 1.00 (0.001) 1

?- frm.labels({a=1,b=2,c=3},[b,d,a])

-> ( ) := 0.00 (0.000) 1

?- frm.labels({a=1,b=2,c=3},[b,c,a])

-> ( ) := 1.00 (0.000) 1

frm.values

frm.values(frame,list|variable)

This primitive will unify or substitue its second term with a list of all the values of the label/value pairs in
the frame.

?- frm.values({a=1,b=2,c=3},:labels)

-> ( [1, 2, 3] ) := 1.00 (0.000) 1

Just like with the frm.labels primitive, the list ordering doesn’t have to match:

?- frm.values({a=1,b=2,c=3},[1,2,3])

-> ( ) := 1.00 (0.000) 1

?- frm.values({a=1,b=2,c=3},[1,3,2])

-> ( ) := 1.00 (0.000) 1

?- frm.values({a=1,b=2,c=3},[1,3,4])

-> ( ) := 0.00 (0.000) 1

frm.pairs

frm.pairs(frame,list|variable)

The primitive frm.pairs will unify or substitue its second term with a list of all the label/value pairs in the
frame. Each of the pairs will be stored in a list of two elements as seen in this example:

?- frm.pairs({a=1,b=2,c=3},:pairs)

-> ( [[a, 1], [b, 2], [c, 3]] ) := 1.00 (0.000) 1

When the second term is a list that contains lists, the list ordering doesn’t have to match the order in which
the frame label/value pairs have been specified.

frm.cat

frm.cat(frame,frame,frame|variable)

Thie primitive will merge two frames and unify/substitute it with the third term.

?- frm.cat({a=1,b=2,c=3},{d=4},:merged)

-> ( {a = 1, b = 2, c = 3, d = 4} ) := 1.00 (0.000) 1

When a label exists in both frames, both value will be put in a list and the list will be stored in the output
frame:

61



?- frm.cat({a=1,b=2,c=3},{c=4},:merged)

-> ( {a = 1, b = 2, c = [3, 4]} ) := 1.00 (0.000) 1

frm.sub

frm.sub(frame,list,frame|variable)

This primitive will extract a collection of label/value pairs from the frame given as the first term and unify
or substitue its third term with a frame containing them. The second term is a list of all the labels to be
included. Here’s an example:

?- frm.sub({a=1,b=2,c=3},[a,c],:sub)

-> ( {a = 1, c = 3} ) := 1.00 (0.000) 1

frm.swap

frm.swap(frame,frame,frame|variable)

This primitive unifies or substitues the last term with a new frame containing the concatenation of its first
two terms. If a label in the second frame is already present in the first frame, its value will be replaced by
the one from the second term. For example:

?- frm.swap({a=4,b=2},{a=3,c=5},:f)

-> ( {a = 3, b = 2, c = 5} ) := 1.00 (0.000) 1

5.6 Functor

This section covers all the primitives that manipulate functors.

fun.length

fun.length(functor,number|variable)

This primitive will unify or substitue its second term with the length (that is, the arity) of the functor passed
as first term.

?- fun.length(truck(red,1930,ford),:l)

-> ( 3 ) := 1.00 (0.000) 1

fun.make

fun.make(symbol,list,functor|variable)

The fun.make primitive unify or substitue its third term with a functor created from the first (the label)
and second (the list of terms) terms. For example:

?- fun.make(product,[\:name,apple,_],:func)

-> ( product(:name, apple, _) ) := 1.00 (0.000) 1

62



fun.member

fun.member(functor,term)

This primitive will resolve to the truth value of 1 only if the second term unifies with any of the terms in the
functor. For example:

?- fun.member(truck(red,1930,ford),ford)

-> ( ) := 1.00 (0.000) 1

?- fun.member(truck(red,1930,ford),red)

-> ( ) := 1.00 (0.000) 1

?- fun.member(truck(red,1930,ford),green)

-> ( ) := 0.00 (0.000) 1

If the second term is an unbound variable, the primitive will generate as many statements as there are terms

in the functor:

?- fun.member(truck(red,1930,ford),:x)

-> ( red ) := 1.00 (0.000) 1

-> ( 1930 ) := 1.00 (0.000) 2

-> ( ford ) := 1.00 (0.000) 3

fun.label

fun.label(functor,symbol|variable)

This primitive will unify or substitue its second term with the label of the functor passed as first term.

fun.terms

fun.terms(functor,list|variable)

This primitive will unify or substitue its second term with a list of the functor’s terms. For example:

?- fun.terms(truck(red,1930,ford),:terms)

-> ( [red, 1930, ford] ) := 1.00 (0.002) 1

When the second term is a list, it will have to be ordered the same way to successfully unify.

5.7 List

All primitives related to handling lists are grouped in this category.

lst.all

lst.all(list,list)

The primitive lst.all will resolve with a truth value of 1 if all the element in its second term (a list) are
found in its first term, also a list. For example:

?- lst.all([a,b,c,d,e],[b,d])

-> ( ) := 1.00 (0.000) 1

?- lst.all([a,b,c,d,e],[b,d,f])

-> ( ) := 0.00 (0.000) 1

63



lst.any

lst.any(list,list)

The primitive lst.all will resolve with a truth value of 1 if any of the element in its second term (a list) is
found in its first term, also a list. For example:

?- lst.any([a,b,c,d,e],[b,d,f])

-> ( ) := 1.00 (0.000) 1

?- lst.any([a,b,c,d,e],[f])

-> ( ) := 0.00 (0.000) 1

lst.avg

lst.avg(list,term|variable)

This primitive will unify its second term with the computed average of all elements in the list given as first
term. For example:

?- lst.avg([1,5,0,8],:v)

-> ( 3.500000 ) := 1.00 (0.000) 1

lst.cat

lst.cat(term+,list|variable)

The primitive unifies the last term with a concatenation of all the other terms into a list. For example:

?- lst.cat(1,2,3,4,:l)

-> ( [1, 2, 3, 4] ) := 1.00 (0.000) 1

?- lst.cat([1,2],3,[4],:l)

-> ( [1, 2, 3, 4] ) := 1.00 (0.000) 1

lst.combi

lst.combi(list,list|variable)

The lst.combi primitive will unify its second term with every possible combination of the elements in the
first term (expected to be a list). For example:

?- lst.combi([a,b,c,d],:l)

-> ( [] ) := 1.00 (0.000) 1

-> ( [a] ) := 1.00 (0.001) 2

-> ( [b] ) := 1.00 (0.001) 3

-> ( [c] ) := 1.00 (0.001) 4

-> ( [d] ) := 1.00 (0.001) 5

-> ( [a, b] ) := 1.00 (0.001) 6

-> ( [a, c] ) := 1.00 (0.001) 7

-> ( [a, d] ) := 1.00 (0.001) 8

-> ( [b, c] ) := 1.00 (0.001) 9

-> ( [b, d] ) := 1.00 (0.001) 10

-> ( [c, d] ) := 1.00 (0.001) 11

-> ( [a, b, c] ) := 1.00 (0.001) 12

-> ( [a, b, d] ) := 1.00 (0.001) 13

64



-> ( [a, c, d] ) := 1.00 (0.001) 14

-> ( [b, c, d] ) := 1.00 (0.002) 15

-> ( [a, b, c, d] ) := 1.00 (0.002) 16

lst.diff

lst.diff(list)

The primitive lst.diff will resolve with a truth value of 1 if its sole term is a list whose elements are all
unique. For example:

?- lst.diff([a,b,c,d])

-> ( ) := 1.00 (0.000) 1

?- lst.diff([a,b,a,d])

-> ( ) := 0.00 (0.000) 1

lst.empty

lst.empty(list)

The primitive lst.empty will resolve with a truth value of 1 if its sole term is an empty list. For example:

?- lst.empty([a,b,c,d])

-> ( ) := 0.00 (0.000) 1

?- lst.empty([])

-> ( ) := 1.00 (0.000) 1

lst.except

lst.except(term,list)

The lst.except primitive will resolve to a truth value of 1.0 if its first term is not in the list provided as
second term, like in the following example:

?- lst.except(3,[3,2])

-> ( ) := 0.00 (0.000) 1

?- lst.except(5,[3,2])

-> ( ) := 1.00 (0.000) 1

lst.excl

lst.excl(list,list)

The lst.excl primitive will resolve to a truth value of 1.0 if all terms in its second term are not present in
the list given as first term. For example:

?- lst.excl([a,b,c,d],[c,b])

-> ( ) := 0.00 (0.000) 1

?- lst.excl([a,b,c,d],[e,f])

-> ( ) := 1.00 (0.000) 1

65



lst.flip

lst.flip(list|variable,list|variable)

The lst.flip primitive will unify both terms with a list whose content is the inverse of the content of
whichever term is a list. For example:

?- lst.flip([a,b,c,d],:l)

-> ( [d, c, b, a] ) := 1.00 (0.000) 1

?- lst.flip(:l,[a,b,c,d])

-> ( [d, c, b, a] ) := 1.00 (0.000) 1

lst.head

lst.head(list,term)

This primitive will unify or substitue its second term with the head (the first element)) in the list passed as
first term:

?- lst.head([a,b,c,d],:h)

-> ( a ) := 1.00 (0.000) 1

lst.incl

lst.incl(list,list)

The lst.incl primitive will resolve to a truth value of 1.0 if all terms in its second term are present in the
list given as first term. For example:

?- lst.incl([a,b,c,d],[c,b])

-> ( ) := 1.00 (0.000) 1

?- lst.incl([a,b,c,d],[e,f])

-> ( ) := 0.00 (0.000) 1

lst.init

lst.init(list,list|variable)

The lst.init primitive will unify its second term with a list containing all the items from the list given as
first term but the last item. For example:

?- lst.init([a,b,c,d,e],:l)

-> ( [a, b, c, d] ) := 1.00 (0.001) 1

lst.it

lst.it(term,term|variable)

This primitive will unify its second term with either the first term if it’s a list, or a list containing the first
term if it isn’t. For example:

?- lst.it(a,:l)

-> ( [a] ) := 1.00 (0.000) 1

?- lst.it([a],:l)

-> ( [a] ) := 1.00 (0.000) 1

66



lst.item

lst.item(list,number|variable,term|variable)

This primitive can be used to get a given element from a list based on its index, or find the index of the first
occurence of a term in the list:

?- lst.item([a,b,c,d],0,:e)

-> ( a ) := 1.00 (0.000) 1

?- lst.item([a,b,c,d],:i,b)

-> ( 1 ) := 1.00 (0.000) 1

When the last two terms of the primitive are unbound variables, it will generate all possible combinations
of the two terms:

?- lst.item([a,b,c,d],:i,:v)

-> ( 0 , a ) := 1.00 (0.000) 1

-> ( 1 , b ) := 1.00 (0.001) 2

-> ( 2 , c ) := 1.00 (0.001) 3

-> ( 3 , d ) := 1.00 (0.001) 4

lst.join

lst.join(list,list,list|variable)

The lst.join primitive will combine the content of its first two terms (without duplicates) into a list to be
unified with the third term. For example:

?- lst.join([a,b,c,d],[d,e,f],:l)

-> ( [a, d, b, e, c, f] ) := 1.00 (0.000) 1

lst.knit

lst.knit(list+,list|variable)

This primitive will interleave the elements of each lists given as argument into a list and unify it with the
last term. For example:

?- lst.knit([1,2,3,4],[a,b,c,d],:l)

-> ( [[1, a], [2, b], [3, c], [4, d]] ) := 1.00 (0.000) 1

?- lst.knit([1,2,3,4],[a,b,c],[e,f],:l)

-> ( [[1, a, e], [2, b, f]] ) := 1.00 (0.000) 1

lst.length

lst.length(list,number|variable)

lst.length(variable,number,term?)

This primitive will unify or substitue its second term with the length (that is the number of items) in the
list passed as first term.

?- lst.length([1,2,3,4,5],:l)

-> ( 5 ) := 1.00 (0.000) 1

67



If the first term is an unbound variable and the second term is a number, the variable will be bound to a list
of that size filled with wilcard variable:

?- lst.length(:l,5)

-> ( [_, _, _, _, _] ) := 1.00 (0.000) 1

An optional third term can be given when a list is being created to be the term to be used to fill the list

instead of the wilcard variable. For example:

?- lst.length(:l,5,0)

-> ( [0, 0, 0, 0, 0] ) := 1.00 (0.000) 1

lst.make

lst.make(term+,list|variable)

This primitive unifies the last term with a list containing all the other terms. For example:

?- lst.make([a],b,c,d,:l)

-> ( [[a], b, c, d] ) := 1.00 (0.001) 1

?- lst.make(a,b,c,d,:l)

-> ( [a, b, c, d] ) := 1.00 (0.001) 1

lst.max

lst.max(list,term|variable)

This primitive will unify its second term with the maximum value of all elements in the list given as first
term. For example:

?- lst.max([1,5,0,8],:l)

-> ( 8 ) := 1.00 (0.000) 1

?- lst.max([1,5,0,8],8)

-> ( ) := 1.00 (0.000) 1

?- lst.max([1,5,0,8],9)

-> ( ) := 0.00 (0.000) 1

lst.member

lst.member(term|variable,list|variable)

The lst.member primitive will unify the first term with each element of the list provided as second term,
like in the following example:

?- lst.member(:x,[3,2])

-> ( 3 ) := 1.00 (0.000) 1

-> ( 2 ) := 1.00 (0.000) 2

?- lst.member(3,[3,2])

-> ( ) := 1.00 (0.000) 1

?- lst.member(5,[3,2])

-> ( ) := 0.00 (0.000) 1

68



The primitive can be used to generate all possible combinations when used with a list having wildcard

variables in it. Here’s an example:

?- set(:l,[a,_,c,_,e]), lst.member(f,:l), lst.member(g,:l)

-> ( [a, f, c, g, e] ) := 1.00 (0.001) 1

-> ( [a, g, c, f, e] ) := 1.00 (0.001) 2

lst.min

lst.min(list,term|variable)

This primitive will unify its second term with the minimum value of all elements in the list given as first
term. For example:

?- lst.min([1,5,0,8],:l)

-> ( 0 ) := 1.00 (0.000) 1

?- lst.min([1,5,0,8],0)

-> ( ) := 1.00 (0.000) 1

?- lst.min([1,5,0,8],9)

-> ( ) := 0.00 (0.000) 1

lst.mix

lst.mix(list,list|variable)

This primitive will unify or bind its second term with a copy of its first term where the elements have been
scrambled randomly within the list. For example:

?- lst.mix([1,2,3,4,5,6,7,8,9,0],:l)

-> ( [9, 1, 2, 8, 7, 5, 3, 0, 6, 4] ) := 1.00 (0.001) 1

?- lst.mix([1,2,3,4,5,6,7,8,9,0],:l)

-> ( [2, 6, 7, 0, 1, 9, 5, 3, 8, 4] ) := 1.00 (0.001) 1

lst.remove

lst.remove(term,list,list|variable)

The lst.remove primitive will resolve to a truth value of 1.0 if its first term is in the list provided as second
term, and will unify or substitue its third term with a copy of its second term where all instances of the first
term as been removed. For example:

?- lst.remove(a,[a,b,c,a,d],:l)

-> ( [b, c, d] ) := 1.00 (0.000) 1

lst.rest

lst.rest(list,list|variable)

This primitive will unify or substitue its second term with the tail (a list containing all elements but the
first) in the list passed as first term:

?- lst.rest([a,b,c,d],:h)

-> ( [b, c, d] ) := 1.00 (0.000) 1

69



lst.span

lst.span(range|list,list)

This primitive will unify a range (first term) over all the elements of a list without having the same element
twice in the output list (the third term). For example:

?- lst.length(:l,4), lst.span(<1|4>,:l);

-> ( [1, 2, 3, 4] ) := 1.00 (0.001) 1

-> ( [1, 2, 4, 3] ) := 1.00 (0.001) 2

-> ( [1, 3, 2, 4] ) := 1.00 (0.001) 3

-> ( [1, 3, 4, 2] ) := 1.00 (0.001) 4

-> ( [1, 4, 3, 2] ) := 1.00 (0.001) 5

-> ( [1, 4, 2, 3] ) := 1.00 (0.001) 6

-> ( [2, 1, 3, 4] ) := 1.00 (0.001) 7

-> ( [2, 1, 4, 3] ) := 1.00 (0.001) 8

-> ( [2, 3, 1, 4] ) := 1.00 (0.001) 9

-> ( [2, 3, 4, 1] ) := 1.00 (0.001) 10

-> ( [2, 4, 3, 1] ) := 1.00 (0.001) 11

-> ( [2, 4, 1, 3] ) := 1.00 (0.001) 12

-> ( [3, 2, 1, 4] ) := 1.00 (0.001) 13

-> ( [3, 2, 4, 1] ) := 1.00 (0.002) 14

-> ( [3, 1, 2, 4] ) := 1.00 (0.002) 15

-> ( [3, 1, 4, 2] ) := 1.00 (0.002) 16

-> ( [3, 4, 1, 2] ) := 1.00 (0.002) 17

-> ( [3, 4, 2, 1] ) := 1.00 (0.002) 18

-> ( [4, 2, 3, 1] ) := 1.00 (0.002) 19

-> ( [4, 2, 1, 3] ) := 1.00 (0.002) 20

-> ( [4, 3, 2, 1] ) := 1.00 (0.002) 21

-> ( [4, 3, 1, 2] ) := 1.00 (0.002) 22

-> ( [4, 1, 3, 2] ) := 1.00 (0.002) 23

-> ( [4, 1, 2, 3] ) := 1.00 (0.002) 24

?- lst.length(:l,3), lst.span([a,b,c],:l);

-> ( [a, b, c] ) := 1.00 (0.000) 1

-> ( [a, c, b] ) := 1.00 (0.001) 2

-> ( [b, a, c] ) := 1.00 (0.001) 3

-> ( [b, c, a] ) := 1.00 (0.001) 4

-> ( [c, b, a] ) := 1.00 (0.001) 5

-> ( [c, a, b] ) := 1.00 (0.001) 6

lst.sort

lst.sort(list,list)

lst.sort(list,list,number)

This primitive will unify or bind its last term with a copy of its first term where the elements have been
sorted in increasing order. If a third term is given, it will be assumed that the list to sort contains lists and
that the number is the index of the element to be used for sorting the lists. For example:

?- lst.sort([3,7,1,9,4,3],:l)

-> ( [1, 3, 3, 4, 7, 9] ) := 1.00 (0.001) 1

?- lst.sort([[3,a],[7,b],[1,d],[9,f],[4,e],[3,z]],:l,1)

-> ( [[3, a], [7, b], [1, d], [4, e], [9, f], [3, z]] ) := 1.00 (0.001) 1

Only atoms and lists (when a third term is given) can be sorted.

70



lst.split

lst.split(list,list|variable,list|variable)

This primitive will unify or bind its second and third terms with every possible split of the first term (a
list).For example:

?- lst.split([a,b,c,d],:l,:r)

-> ( [] , [a, b, c, d] ) := 1.00 (0.000) 1

-> ( [a] , [b, c, d] ) := 1.00 (0.001) 2

-> ( [a, b] , [c, d] ) := 1.00 (0.001) 3

-> ( [a, b, c] , [d] ) := 1.00 (0.001) 4

-> ( [a, b, c, d] , [] ) := 1.00 (0.001) 5

If the first term is an unbound variable and the two other terms are lists, the primitive will unify the first
term with a list concatenating both lists. For example:

?- lst.split(:l,[a,b,c],[d])

-> ( [a, b, c, d] ) := 1.00 (0.000) 1

lst.sub

lst.sub(list|variable,number,number,list|variable)

The lst.sub primitive will unify or substitue its fourth term with a subpart of the list given as first term.
The subpart is defined by an offset (second term) and a length (third term). For example:

?- lst.sub([1,2,3,4,5,6],4,2,[5,:x])

-> ( 6 ) := 1.00 (0.000) 1

If the first and fourth terms are both lists and the offset is a un-bound variable, the call will unify the offset
will possible occurences of the fourth term in the list. As in this example:

?- lst.sub([1,2,3,4,5,6,8,5,6],:i,:v,[5,6])

-> ( 4 , 2 ) := 1.00 (0.001) 1

-> ( 7 , 2 ) := 1.00 (0.001) 2

lst.swap

lst.swap(list,number,term,variable|list)

This primitive will unify or bind its last term with a copy of its first term where the element at the position
given as second term has been swapped for the third term. For example:

?- lst.swap([a,b,c,d,e],0,f,:l)

-> ( [f, b, c, d, e] ) := 1.00 (0.001) 1

?- lst.swap([a,b,c,d,e],3,f,:l)

-> ( [a, b, c, f, e] ) := 1.00 (0.001) 1

71



lst.tail

lst.tail(list,list|variable)

This primitive will unify or substitue its second term with the tail (the last element) in the list passed as
first term:

?- lst.tail([a,b,c,d],:h)

-> ( d ) := 1.00 (0.000) 1

5.8 Boolean Logic

This section contains all the primitives that deal with boolean logic operations.

boo.and

boo.and(boolean+,boolean|variable)

This primitive will unify or bind its last term with the boolean AND of all other terms. For example:

?- boo.and(1,0,1,:v)

-> ( false ) := 1.00 (0.000) 1

?- boo.and(1,1,1,:v)

-> ( true ) := 1.00 (0.000) 1

boo.not

boo.not(boolean|variable,boolean|variable)

This primitive will unify or bind its terms with the boolean negation of the other term. For example:

?- boo.not(1,:v)

-> ( false ) := 1.00 (0.001) 1

?- boo.not(0,:v)

-> ( true ) := 1.00 (0.000) 1

?- boo.not(0,1)

-> ( ) := 1.00 (0.001) 1

?- boo.not(:v,1)

-> ( false ) := 1.00 (0.000) 1

boo.or

boo.or(boolean+,boolean|variable)

This primitive will unify or bind its last term with the boolean OR of all other terms. For example:

?- boo.or(1,0,1,:v)

-> ( true ) := 1.00 (0.000) 1

?- boo.or(1,1,1,:v)

-> ( true ) := 1.00 (0.000) 1

?- boo.or(0,0,:v)

-> ( false ) := 1.00 (0.000) 1

72



boo.xor

boo.xor(boolean+,boolean|variable)

This primitive will unify or bind its last term with the boolean exclusive disjunction of all other terms. For
example:

?- boo.xor(1,1,:v)

-> ( false ) := 1.00 (0.001) 1

?- boo.xor(1,0,:v)

-> ( true ) := 1.00 (0.001) 1

?- boo.xor(1,0,1,:v)

-> ( false ) := 1.00 (0.001) 1

?- boo.xor(1,0,0,:v)

-> ( true ) := 1.00 (0.001) 1

5.9 Mathematics

This section contains all the primitives that deal with mathematical operations.

mao.abs

mao.abs(number|variable,number|variable)

This primitive will unify or bind the second term with the absolute value of the first term. If the second term

is a number and the first one is an unbound variable the call will generates two statements. For example:

?- mao.abs(2,:v)

-> ( 2 ) := 1.00 (0.000) 1

?- mao.abs(-2,:v)

-> ( 2 ) := 1.00 (0.000) 1

?- mao.abs(:v,4)

-> ( -4 ) := 1.00 (0.000) 1

-> ( 4 ) := 1.00 (0.000) 2

mao.atan2

mao.atan2(number,number,number|variable)

The primitive mao.atan2 will unify or bind its third term with the principal value of the arc tangent of its
first term divided by its second, expressed in degrees. For example:

?- mao.atan2(10,-10,:v)

-> ( 135 ) := 1.00 (0.000) 1

mao.ceil

mao.ceil(number|variable,number|variable)

This primitive will unify or bind the second term with the smallest integer value greater than or equal to
the first term. For example:

73



?- mao.ceil(2.1,:x)

-> ( 3 ) := 1.00 (0.000) 1

?- mao.ceil(2.5,:x)

-> ( 3 ) := 1.00 (0.000) 1

?- mao.ceil(2.99,:x)

-> ( 3 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with a range value:

?- mao.ceil(:r,3)

-> ( <2.000001|2.999999> ) := 1.00 (0.000) 1

mao.cos

mao.cos(number,number|variable)

The primitive mao.cos will unify or bind its second term with the cosine of the angle (in degrees) value given
as first term. If the first term is an unbound variable and the second is a number then the primitive will
unify the first term with the arc-cosine. For example:

?- mao.cos(60,:v)

-> ( 0.500000 ) := 1.00 (0.000) 1

?- mao.cos(:a,0.5)

-> ( 60.000000 ) := 1.00 (0.000) 1

mao.d2r

mao.d2r(number|variable,number|variable)

This primitive will unify or bind its second term with the conversion from degrees to radians of the first
term. If the first term is an unbound variable and the second term is a number, it will bind the variable with
the conversion from radians to degree of the second term. For example:

?- mao.d2r(95,:v)

-> ( 1.658063 ) := 1.00 (0.000) 1

?- mao.d2r(:v,1.658)

-> ( 94.996402 ) := 1.00 (0.000) 1

mao.exp

mao.exp(number|variable,number|variable)

This primitive will unify or bind the second term with e raised to the power of the first term. For example:

?- mao.exp(2,:v)

-> ( 0.301030 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with the inverse operation:

?- mao.exp(:v,0.301030)

-> ( 2.000000 ) := 1.00 (0.000) 1

74



mao.floor

mao.floor(number|variable,number|variable)

This primitive will unify or bind the second term with the largest integer value less than or equal to the first
term. For example:

?- mao.floor(2.145,:x)

-> ( 2 ) := 1.00 (0.000) 1

?- mao.floor(2.145,2)

-> ( ) := 1.00 (0.000) 1

?- mao.floor(6,:x)

-> ( 6 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with a range value:

?- mao.floor(:r,4)

-> ( <4|4.999999> ) := 1.00 (0.000) 1

mao.log

mao.log(number|variable,number|variable)

This primitive will unify or bind the second term with the natural logarithm (base-e logarithm) of the first
term. For example:

?- mao.log(2.7,:x)

-> ( 0.993252 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with the inverse operation:

?- mao.log(:v,0.993252)

-> ( 2.700001 ) := 1.00 (0.000) 1

mao.log10

mao.log10(number|variable,number|variable)

This primitive will unify or bind the second term with the common logarithm (base-10 logarithm) of the
first term. For example:

?- mao.log10(31.62,:v)

-> ( 1.499962 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with the inverse operation:

?- mao.log10(:v,1.5)

-> ( 31.622777 ) := 1.00 (0.000) 1

75



mao.modf

mao.modf(number|variable,number|variable,number|variable)

This primitive will unify or bind the second and third terms with the integer and fractional parts the first
term. For example:

?- mao.modf(3.14,:i,:f)

-> ( 3 , 0.140000 ) := 1.00 (0.000) 1

?- mao.modf(3.14,:i,0.14)

-> ( 3 ) := 1.00 (0.000) 1

?- mao.modf(3.14,3,:f)

-> ( 0.140000 ) := 1.00 (0.000) 1

If the second and third terms is a number and the first one is an unbound variable, the primitive will bind
the variable with a floating pont value created from the integer and fractional values:

?- mao.modf(:v,3,0.14)

-> ( 3.140000 ) := 1.00 (0.000) 1

mao.pow

mao.pow(number|variable,number|variable,number|variable)

The mao.pow primitive will unify or bind its third terms with the value of its first term raised to the power
of its second term. For example:

?- mao.pow(8,3,:v)

-> ( 512 ) := 1.00 (0.001) 1

If the first or second terms are variables (but not at the same time), the primitive will bind them to the
corresponding value which will make the operation work (invser power). For example:

?- mao.pow(8,:p,512)

-> ( 3 ) := 1.00 (0.000) 1

?- mao.pow(:v,3,512)

-> ( 8.000000 ) := 1.00 (0.001) 1

mao.round

mao.round(number|variable,number|variable)

This primitive will unify or bind the second term with the nearest integer value to the first term. For example:

?- mao.round(2.1,:v)

-> ( 2 ) := 1.00 (0.000) 1

?- mao.round(2.5,:v)

-> ( 3 ) := 1.00 (0.000) 1

?- mao.round(2.9,:v)

-> ( 3 ) := 1.00 (0.000) 1

If the second term is a number and the first one is an unbound variable, the primitive will bind the variable

with a range value:

76



?- mao.round(:r,3)

-> ( <2.500001|3> ) := 1.00 (0.000) 1

mao.sign

mao.sign(number,number|variable)

This primitive will unify or bind the second term with the sign of the first term. For example:

?- mao.sign(42,:s)

-> ( 1 ) := 1.00 (0.000) 1

?- mao.sign(-42,:s)

-> ( -1 ) := 1.00 (0.000) 1

mao.sin

mao.sin(number,number|variable)

The primitive mao.sin will unify or bind its second term with the sine of the angle value (in degrees) given
as first term. If the first term is an unbound variable and the second is a number then the primitive will
unify the first term with the arc-sine. For example:

?- mao.sin(30,:v)

-> ( 0.500000 ) := 1.00 (0.000) 1

?- mao.sin(:a,0.5)

-> ( 30.000000 ) := 1.00 (0.000) 1

mao.sqrt

mao.sqrt(number|variable,number|variable)

This primitive will unify or bind its second terms with the square root of its first term. For example:

?- mao.sqrt(25,:v)

-> ( 5 ) := 1.00 (0.001) 1

If the first term is an unbound variable and the second term is a number, the inverse square root will
computed:

?- mao.sqrt(:v,5)

-> ( 25 ) := 1.00 (0.000) 1

5.10 Miscellaneous

Hard to group primitives are contained in this category.

fzz.labels

fzz.labels(variable)

This primitive will unify its sole term with a list containing the labels of all the elemental objects on the
substrate. For example:

77



?- fzz.labels(:l)

-> ( [fzz.collect, fzz.eval, fzz.evently] ) := 1.00 (0.000) 1

fzz.lst

fzz.lst(variable|list)

fzz.lst(symbol,variable|list)

This primitive will unify it’s last term with a list containing the GUID (as guid term) of all the elemental

objects on the substrate. When two terms are provided, the first one is expected to be a symbol, indicating
which group of objects to be listed. Calling this primitive will only work when offloaded. For example:

?- &fzz.lst(:l)

-> ( [’guid("263e7d79-c5e4-1f48-6a99-c8c022a2dbf3"), ’guid("1e9618ff-8e93-0147-efb6-5527b88c99cb"),

’guid("8cbb3f79-6456-d94b-3393-8766fb3d4c72"), ’guid("f4608c21-6a8f-ab4c-4d92-5b092fa4171e"),

’guid("40b3f684-f545-0241-99be-998167b99ab6"), ’guid("a099afdb-93a7-db4c-40b8-0341ea987ed9"), ’

guid("71cfade6-3cab-c34e-3ca6-e7a43e6fb5f7"), ’guid("330a4f04-e64c-8949-ec9e-83490c365dcb"), ’

guid("2aeb490e-bc61-2e43-99ac-3e6a11834049"), ’guid("2b5a6fef-7b4b-394b-dfa5-261d8c07a6f6"), ’

guid("2541b553-b2bc-444b-e2ac-398a9e75229c"), ’guid("7d6cb4d0-1012-554f-efbb-21e68971e496"), ’

guid("2148bc22-1f6c-0443-c59a-ed6185699715"), ’guid("24da8140-5f87-9849-be9a-f7c4aa4d5c0c"), ’

guid("91448fe7-0dd7-bc43-2795-3ec6e3a71537"), ’guid("9c5ab238-d08e-d148-a998-203f8096878c"), ’

guid("adae7700-7605-114d-2492-45e3d69b9a23"), ’guid("29a0e5fe-a979-7542-0bb3-c275d09e0190"), ’

guid("0513542a-ed1b-474b-e099-fa92fa234295"), ’guid("e291a61e-fb51-0747-9da4-d03bf24d22a4")] )

:= 1.00 (0.002) 1

gid.make

gid.make(guid|variable)

This primitive will unify or substitue its only term with a randomly generated guid term. Here’s an example:

?- gid.make(:g)

-> ( ’guid("e30f998a-020d-fd4c-c0b8-e384d2dc8020") ) := 1.00 (0.001) 1

?- gid.make(:g)

-> ( ’guid("ce0c25e6-5adc-9e48-0c80-57b70db9a2e0") ) := 1.00 (0.000) 1

gid.sym

gid.sym(symbol|variable)

This primitive will unify or substitue its term with a randomly generated symbol. Here’s an example:

?- gid.sym(:g)

-> ( yzrxzqubtaxcqrubbuyeaaqfcuysbfuw ) := 1.00 (0.000) 1

The generated symbol is a globally unique identifier (GUID).

gid.str

gid.str(symbol|variable)

This primitive will unify or substitue its term with a randomly generated string. Here’s an example:

?- gid.str(:g)

-> ( "005a7ce9-433f-574c-d1ba-5a03240eb98e" ) := 1.00 (0.000) 1

78



var.capture

var.capture(variable,list?)

This primitive will unify or substitue its first term with a frame containing all bound variables and their
values. If a second term is provided, it is expected to be the name of all the variables which are not to be
included in the capture. Here’s an example:

?- set(:A,1), set(:B,2), set(:C,3), var.capture(:f)

-> ( {A = 1, B = 2, C = 3} ) := 1.00 (0.000) 1

?- set(:A,1), set(:B,2), set(:C,3), var.capture(:f,[C])

-> ( {A = 1, B = 2} ) := 1.00 (0.000) 1

var.collect

var.collect(symbols+,variable)

This primitive will unify or substitue its last term with a list containing the values of all the bound variables

which label was provided as terms to the primitive. For example:

?- set(:A,1), set(:B,2), set(:C,3), var.collect(A,C,:f)

-> ( [1, 3] ) := 1.00 (0.000) 1

var.release

var.release(frame)

This primitive will thake the content of the frame given as its only term and bind a variable for each of the
label/value pairs. For example:

?- var.release({a = 1, b = 2}), console.puts(:a," ",:b)

1 2

-> ( 1 , 2 ) := 1.00 (0.000) 1

5.11 Quirk

All primitives related to handling quirks are grouped in this category.

qrk.head

qrk.head(quirk,term)

This primitive will unify or substitue its second term with the head (the first element)) in the quirk passed
as first term:

?- qrk.head(hello^5,:h)

-> ( hello ) := 1.00 (0.000) 1

qrk.make

qrk.make(term,term,quirk|variable)

This primitive will unify or substitue its third term with a quirk build from its first and second term:

?- qrk.make(hello,5,:q)

-> ( hello^5 ) := 1.00 (0.000) 1

79



qrk.tail

qrk.tail(quirk,term)

This primitive will unify or substitue its second term with the tail (the second element)) in the quirk passed
as first term:

?- qrk.head(hello^5,:h)

-> ( 5 ) := 1.00 (0.000) 1

5.12 Random

This section describes primitives that generate random numbers.

rnd.real

rnd.real(number,number|variable,number?,number?)

This primitive will unify or bind the second term with a series of (floating point) random number picked in
the range defined in between the third and fourth terms. The first term is the count of random numbers to
be provided. For example:

?- rnd.real(5,:v,1,100)

-> ( 86.598612 ) := 1.00 (0.000) 1

-> ( 80.759627 ) := 1.00 (0.000) 2

-> ( 41.959139 ) := 1.00 (0.000) 3

-> ( 30.452654 ) := 1.00 (0.001) 4

-> ( 20.528407 ) := 1.00 (0.001) 5

When no range is provided, the random number will all be in between 0 and 1:

?- rnd.real(5,:v)

-> ( 0.791721 ) := 1.00 (0.000) 1

-> ( 0.829935 ) := 1.00 (0.000) 2

-> ( 0.496939 ) := 1.00 (0.000) 3

-> ( 0.007982 ) := 1.00 (0.001) 4

-> ( 0.891288 ) := 1.00 (0.001) 5

rnd.rsnd

rnd.rsnd(number,number,|variable,number,number)

This primitive will unify or bind the third term with a serie of (floating point) random numbers picked from
a standard normal deviation where the first term is the mean and the second is the standard deviation. The
first term is the count of random numbers to be provided. For example:

?- rnd.rsnd(10,:x,0,1)

-> ( -1 ) := 1.00 (0.001) 1

-> ( 0.488077 ) := 1.00 (0.001) 2

-> ( -2 ) := 1.00 (0.002) 3

-> ( 0 ) := 1.00 (0.002) 4

-> ( 0.807786 ) := 1.00 (0.002) 5

-> ( 0.913344 ) := 1.00 (0.002) 6

-> ( 0 ) := 1.00 (0.003) 7

80



-> ( 0.327671 ) := 1.00 (0.003) 8

-> ( 0.000954 ) := 1.00 (0.003) 9

-> ( 0.762686 ) := 1.00 (0.004) 10

rnd.uint

rnd.uint(number,number|variable,number?,number?)

This primitive will unify or bind the second term with a series of (unsigned integer) random numbers picked
in the range defined between the third and fourth terms. The first term is the count of random numbers to
be provided. For example:

?- rnd.uint(5,:v,1,100)

-> ( 36 ) := 1.00 (0.000) 1

-> ( 44 ) := 1.00 (0.000) 2

-> ( 90 ) := 1.00 (0.001) 3

-> ( 17 ) := 1.00 (0.001) 4

-> ( 55 ) := 1.00 (0.001) 5

When no range is provided, the random numbers will all be in between 0 and the maximum value for a 64-bit
unsigned integer:

?- rnd.uint(5,:v)

-> ( 227958570 ) := 1.00 (0.000) 1

-> ( 2008933850 ) := 1.00 (0.000) 2

-> ( 834617219 ) := 1.00 (0.001) 3

-> ( 351245525 ) := 1.00 (0.001) 4

-> ( 1962305856 ) := 1.00 (0.001) 5

rnd.sint

rnd.sint(number,number|variable,number?,number?)

This primitive will unify or bind the second term with a series of (signed integer) random numbers picked in
the range defined between the third and fourth terms. The first term is the count of random numbers to be
provided. For example:

?- rnd.sint(3,:v,-100,100)

-> ( -48 ) := 1.00 (0.001) 1

-> ( 90 ) := 1.00 (0.001) 2

-> ( -29 ) := 1.00 (0.001) 3

When no range is provided, the random numbers will all be in between the possible value for a 64-bit signed
integer:

?- rnd.sint(5,:v)

-> ( -3832553529235211065 ) := 1.00 (0.001) 1

-> ( 2840651865658580059 ) := 1.00 (0.001) 2

-> ( -4585361323621985541 ) := 1.00 (0.001) 3

-> ( 8886134878488290534 ) := 1.00 (0.001) 4

-> ( 4799459735435763595 ) := 1.00 (0.001) 5

81



5.13 Range

This section describes primitives that handle ranges or generate numbers based on range.

rng.clamp

rng.clamp(range,number,number|variable)

The primitive will unify or bind its third term with its second term clamped to the range provided as first
term. For example:

?- rng.clamp(<1|10>,11,:v)

-> ( 10 ) := 1.00 (0.001) 1

?- rng.clamp(<1|10>,-2,:v)

-> ( 1 ) := 1.00 (0.001) 1

?- rng.clamp(<1|10>,5,:v)

-> ( 5 ) := 1.00 (0.001) 1

rng.inter

rng.inter(range,range,range|variable)

This primitive unifies/binds its third term with the intersection of the two ranges provided as the first terms.
For example:

?- rng.inter(<10.3|26.7>,<17.34|43>,:r)

-> ( <17.340000|26.700000> ) := 1.00 (0.000) 1

If there is no intersection between the two ranges, the call will resolve with a truth value of 0.

rng.max

rng.max(range,number|variable)

The rng.max primitive will unify or bind its second term with the maximum value of the range given as first
term. For example:

?- rng.max(<10.3|26.7>,:max)

-> ( 26.700000 ) := 1.00 (0.000) 1

rng.min

rng.min(range,number|variable)

The rng.min primitive will unify or bind its second term with the minimum value of the range given as first
term. For example:

?- rng.min(<10.3|26.7>,:min)

-> ( 10.300000 ) := 1.00 (0.000) 1

82



rng.norm

rng.norm(range,number,number|variable)

This primitive will unify or bind its third term with the normalized value of the second term. For example:

?- rng.norm(<0|10>,2,:v)

-> ( 0.200000 ) := 1.00 (0.000) 1

?- rng.norm(<0|10>,11,:v)

-> ( 1 ) := 1.00 (0.000) 1

?- rng.norm(<0|10>,3.85,:v)

-> ( 0.385000 ) := 1.00 (0.000) 1

rng.not

rng.not(range,number)

The rng.not primitive will resolve to a truth value of 0 if the second term is a number whose value is within
the range given as first term. For example:

?- rng.not(<0|10>,3.85)

-> ( ) := 0.00 (0.000) 1

?- rng.not(<0|10>,11)

-> ( ) := 1.00 (0.000) 1

rng.inc

rng.inc(range,number)

The rng.inc primitive will resolve to a truth value of 1.0 if the second term is a number whose value is
within the range given as first term. For example:

?- rng.inc(<10.3|26.7>,11)

-> ( ) := 1.00 (0.000) 1

?- rng.inc(<10.3|26.7>,10)

-> ( ) := 0.00 (0.000) 1

Unlike rng.span, this primitive will not generate values within the range if the second term is an unbound
variable.

rng.span

rng.span(range,number,number|variable)

The primitive will unify or bind its third term with any number that is included in the range provided as
first term. The second term is the difference between consecutive values to be used to traverse the range.
For example:

?- rng.span(<0|1>,0.1,:v)

-> ( 0 ) := 1.00 (0.001) 1

-> ( 0.100000 ) := 1.00 (0.002) 2

-> ( 0.200000 ) := 1.00 (0.002) 3

-> ( 0.300000 ) := 1.00 (0.003) 4

-> ( 0.400000 ) := 1.00 (0.003) 5

83



-> ( 0.500000 ) := 1.00 (0.004) 6

-> ( 0.600000 ) := 1.00 (0.004) 7

-> ( 0.700000 ) := 1.00 (0.005) 8

-> ( 0.800000 ) := 1.00 (0.005) 9

-> ( 0.900000 ) := 1.00 (0.006) 10

-> ( 1 ) := 1.00 (0.006) 11

rng.union

rng.union(range,range,range|variable)

This primitive unifies/binds its third term with the union of the two ranges provided as the first terms. For
example:

?- rng.union(<10.3|26.7>,<17.34|43>,:r)

-> ( <10.300000|43> ) := 1.00 (0.000) 1

rng.uint

rng.uint(number,number,number|variable)

This primitive will unify or bind its third term with any unsigned number between the first and second terms.
For example:

?- rng.uint(1,10,11)

-> ( ) := 0.00 (0.001) 1

?- rng.uint(1,10,2)

-> ( ) := 1.00 (0.000) 1

If the third term is an unbound variable, the primitive will generate as many solutions as there are unsigned
integers in the range:

?- rng.uint(1,10,:x)

-> ( 1 ) := 1.00 (0.001) 1

-> ( 2 ) := 1.00 (0.001) 2

-> ( 3 ) := 1.00 (0.001) 3

-> ( 4 ) := 1.00 (0.001) 4

-> ( 5 ) := 1.00 (0.001) 5

-> ( 6 ) := 1.00 (0.002) 6

-> ( 7 ) := 1.00 (0.002) 7

-> ( 8 ) := 1.00 (0.002) 8

-> ( 9 ) := 1.00 (0.002) 9

-> ( 10 ) := 1.00 (0.002) 10

rng.rand

rng.rand(range,number|variable)

This primitive will unify or bind its second term with a random number picked from the first term. For
example:

84



?- rng.rand(<0|1>,:v)

-> ( 0.359032 ) := 1.00 (0.001) 1

?- rng.rand(<0|1>,:v)

-> ( 0.751194 ) := 1.00 (0.000) 1

?- rng.rand(<0|1>,:v)

-> ( 0.320658 ) := 1.00 (0.000) 1

rng.real

rng.real(number,number,number|variable)

This primitive will unify or bind its third term with any real number between the first and second terms.
For example:

?- rng.real(1,10,11)

-> ( ) := 0.00 (0.001) 1

?- rng.real(1,10,2)

-> ( ) := 1.00 (0.000) 1

If the third term is an unbound variable, the primitive will generate as many solutions as there are unsigned
integers in the range:

?- rng.real(1,10,:x)

-> ( 1 ) := 1.00 (0.001) 1

-> ( 2 ) := 1.00 (0.001) 2

-> ( 3 ) := 1.00 (0.001) 3

-> ( 4 ) := 1.00 (0.001) 4

-> ( 5 ) := 1.00 (0.001) 5

-> ( 6 ) := 1.00 (0.002) 6

-> ( 7 ) := 1.00 (0.002) 7

-> ( 8 ) := 1.00 (0.002) 8

-> ( 9 ) := 1.00 (0.002) 9

-> ( 10 ) := 1.00 (0.002) 10

5.14 Regexp

This section describes primitives that handle regular expressions.

rex.make

rex.make(string,regexp|variable)

rex.make(string,list,regexp|variable)

This primitive creates a new regexp using the pattern provided as the first term and an optional list of flags,
and unify it with the last term. For example:

?- rex.make("(the|a)?\s?(dog|cat)\sis\s(wet|cold|sick)",[caseless],:r), rex.match(:r,"dog is wet",:

l)

-> ( ’regexp("(the|a)?\s?(dog|cat)\sis\s(wet|cold|sick)",[CASELESS]) , ["dog is wet", "", "dog", "

wet"] ) := 1.00 (0.000) 1

For the list of supported compilation flags, see Section ?? on page ??.

85



rex.match

rex.match(regexp,string,list|variable?)

The primitive rex.match will match a string given as its second term with the regular expression provided
as first term and will resolve to a truth value of 1.0 if it is a match.

?- rex.match(’regexp("[a|b]+"),"ABAB")

-> ( ) := 0.00 (0.000) 1

?- rex.match(’regexp("^[a|b]+$"),"abab")

-> ( ) := 1.00 (0.000) 1

?- rex.match(’regexp("^[a|b]+$"),"ababc")

-> ( ) := 0.00 (0.000) 1

If a third term is provided, the primitive will unify it with all the matchs between the regexp and the string:

?- rex.match(’regexp("\d+"),"12 drummers drumming, 11 pipers piping, 10 lords a-leaping",:l)

-> ( ["12", "11", "10"] ) := 1.00 (0.000) 1

5.15 Symbol

This section describes primitives related to handling symbols.

sym.cat

sym.cat(term+,string|variable)

This primitive will unify or substitue the concatenation of all its terms but the last one, with the last one.
Then turns that into a symbol. For example:

?- sym.cat(hello,".",4,:x)

-> ( hello.4 ) := 1.00 (0.001) 1

sym.cmp

sym.cmp(symbol,symbol,number|variable,symbol?)

The sym.cmp primitive will unify or substitue its third term with the result of the comparison of its first
two symbol terms. When the first term is greater than the second term, the third term will unify with the
value 1. If less, it will be unified with the value -1. When both strings are identical, the value will be 0. For
example:

?- sym.cmp(hello,hello4,:c)

-> ( -1 ) := 1.00 (0.001) 1

?- sym.cmp(hello,hello,:c)

-> ( 0 ) := 1.00 (0.000) 1

?- sym.cmp(hello,Hello,:c)

-> ( 1 ) := 1.00 (0.000) 1

?- sym.cmp(hello,Hello,:c,insensitive)

-> ( 0 ) := 1.00 (0.000) 1

The optional fourth term can be the symbol insensitive to indicate that the comparison must be case
insensitive.

86



sym.sub

sym.sub(symbol,number,number,symbol|variable)

The sym.sub primitive will unify or substitue its fourth terms with a subpart of the symbol given as first
term. The subpart is defined by an offset (second term) and a length (third term). For example:

?- sym.sub(truck,0,1,:c)

-> ( t ) := 1.00 (0.001) 1

5.16 String

This section describes primitives related to handling strings.

str.cat

str.cat(term+,string|variable)

This primitive will unify or substitue the concatenation of all its terms but the last one, with the last one.
For example:

?- str.cat(hello," ",how," ",are," ",you,:s)

-> ( "hello how are you" ) := 1.00 (0.000) 1

str.cmp

str.cmp(string,string,number|variable,symbol?)

The str.cmp primitive will unify or substitue its third term with the result of the comparison of its first
two string terms. When the first term is greater than the second term, the third term will unify with the
value 1. If less, it will be unified with the value -1. When both strings are identical, the value will be 0. For
example:

?- str.cmp("abcdef","ABCDEF",:c)

-> ( 1 ) := 1.00 (0.000) 1

?- str.cmp("abcdef","ABCDEF",:c,insensitive)

-> ( 0 ) := 1.00 (0.001) 1

The optional fourth term can be the symbol insensitive to indicate that the comparison must be case
insensitive.

str.find

str.find(string,string,number?|variable?)

The str.find primitive will unify or substitue its third term with the offset (starting from 0) within its first
term where the second term was find. If there is no occurence of the second term, the third will unify with
the value -1. For example:

?- str.find("abcdef","bc",:o)

-> ( 1 ) := 1.00 (0.000) 1

?- str.find("abcdef","ef",:o)

-> ( 4 ) := 1.00 (0.000) 1

?- str.find("abcdef","ef",4)

87



-> ( ) := 1.00 (0.000) 1

?- str.find("abcdef","g",:p)

-> ( -1 ) := 1.00 (0.000) 1

The primitive will generate as many solutions as there is occurences of the second term in the string:

?- str.find("abcdefcc","c",:p)

-> ( 2 ) := 1.00 (0.000) 1

-> ( 6 ) := 1.00 (0.001) 2

-> ( 7 ) := 1.00 (0.001) 3

If no third term is given, then the primitive will resolve to a truth value of 1 if the second term is found
anywhere in the first term.

str.flip

str.flip(string,string|variable)

The str.flip primitive will unify or substitue its second term with a string containing the content of the
first term inverted:

?- str.flip("hello, world!",:s)

-> ( "!dlrow ,olleh" ) := 1.00 (0.001) 1

str.head

str.head(string,string)

str.head(string,string,symbol)

The primitive will resolve to a truth value of 1 if the string given as second term is the start of the string

given as first term, 0 otherwise. For example:

?- str.head("hello world!","hello")

-> ( ) := 1.00 (0.000) 1

?- str.head("hello world!","world")

-> ( ) := 0.00 (0.000) 1

?- str.head("hello world!","HELLO")

-> ( ) := 0.00 (0.000) 1

An optional third term (a symbol) can indicate of the case of the strings should not matter (insensitive)
or should (sensitive) in the comparison. When no third term is specified, the default behavior is to be
case sensitive:

?- str.head("hello world!","HELLO",insensitive)

-> ( ) := 1.00 (0.000) 1

str.length

str.length(string,number|variable)

This primitive will unify or substitue its second term with the length (that is the number of characters) in
the string passed as first term.

88



?- str.length("hello, world!",:l)

-> ( 13 ) := 1.00 (0.000) 1

str.rest

str.rest(string,number,string|variable)

The str.rest primitive will unify or substitue its third terms with a subpart of the string given as first
term. The subpart is defined as starting at a given position (the second term) in the string and runs up to
the end of the string. For example:

?- str.rest("hello, how are you?",7,:w)

-> ( "how are you?" ) := 1.00 (0.001) 1

str.sub

str.sub(string,number,number,string|variable)

The str.sub primitive will unify or substitue its fourth terms with a subpart of the string given as first
term. The subpart is defined by an offset (second term) and a length (third term). For example:

?- str.sub("hello, how are you?",7,3,:w)

-> ( "how" ) := 1.00 (0.000) 1

str.swap

str.swap(string,list,string|variable)

The str.swap primitive will unify or substitue its third term with it’s first term where all occurences of
specified strings will have been replaced by provided strings. For example:

?- str.swap("GATTACA",[["A","T"],["C","G"],["G","C"],["T","A"]],:s)

-> ( "CTAATGT" ) := 1.00 (0.000) 1

?- str.swap("abc123abc456789abc",["abc","A"],:s)

-> ( "A123A456789A" ) := 1.00 (0.000) 1

str.tail

str.tail(string,string)

str.tail(string,string,symbol)

The primitive will resolve to a truth value of 1 if the string given as second term is the end of the string

given as first term, 0 otherwise. For example:

?- str.tail("hello world!","world!")

-> ( ) := 1.00 (0.000) 1

?- str.tail("hello world!","world!")

-> ( ) := 0.00 (0.000) 1

?- str.tail("hello world!","WORLD!")

-> ( ) := 0.00 (0.000) 1

89



An optional third term (a symbol) can indicate of the case of the strings should not matter (insensitive)
or should (sensitive) in the comparison. When no third term is specified, the default behavior is to be
case sensitive:

?- str.tail("hello world!","WORLD!",insensitive)

-> ( ) := 1.00 (0.000) 1

str.tokenize

str.tokenize(string,string,list|variable,list?)

This primitive will unify or substitue its third term with a list of tokens, which are substring of its first term
separated by any of the characters that are part of the second term. For example:

?- str.tokenize("66;3.14;22",";",:l)

-> ( ["66", "3.14", "22"] ) := 1.00 (0.000) 1

?- str.tokenize("66;3.14,22",";,",:l)

-> ( ["66", "3.14", "22"] ) := 1.00 (0.000) 1

If the first term is an unbound variable and the 3rd term is a list, the primitive will generate a string from the
concatenation of all items in the list (but only if the terms are string, symbol, number or list). For example:

?- str.tokenize(:s," ",[a,b,c,[d,e,f]])

-> ( "a b c d e f" ) := 1.00 (0.000) 1

When a fourth term is provided, it is expected to be a list of symbols acting as flags. The only flag supported
at the moment is include which instructs the primitive to include the delimiters as elements of the tokenized
list. For example:

?- str.tokenize("66;3.14;22",";",:l,[include])

-> ( ["66", ";", "3.14", ";", "22"] ) := 1.00 (0.001) 1

str.tolower

str.tolower(string,string|variable)

The str.tolower primitive will unify or substitue its second term with a copy of first term where all
alphabetic characters have been converted to lowercase:

?- str.tolower("HeLLo",:s)

-> ( "hello" ) := 1.00 (0.000) 1

str.tonum

str.tonum(string|variable,number|variable)

The str.tonum primitive will unify or substitue its second term with a number parsed from its first term.
For example:

90



?- str.tonum("45f",:v)

-> ( 45 ) := 1.00 (0.000) 1

?- str.tonum("-125",:v)

-> ( -125 ) := 1.00 (0.000) 1

If the first term is an unbound variable and the second term is a number, the primitive will unify the variable
with a string eersion of the number:

?- str.tonum(:x,12.42)

-> ( "12.420" ) := 1.00 (0.000) 1

?- str.tonum(:x,66)

-> ( "66" ) := 1.00 (0.000) 1

str.toupper

str.toupper(string,string|variable)

The str.toupper primitive will unify or substitue its second term with a copy of first term where all
alphabetic characters have been converted to uppercase:

?- str.toupper("HeLLo",:s)

-> ( "HELLO" ) := 1.00 (0.000) 1

str.tosym

str.tosym(string,symbol|variable)

The str.tosym primitive will unify or substitue its second term with symbol based on its first term. For
example:

?- str.tosym("HeLLo",:s)

-> ( HeLLo ) := 1.00 (0.000) 1

?- str.tosym("3.14",:s)

-> ( a3.14 ) := 1.00 (0.000) 1

?- str.tosym("hello, world.",:s)

-> ( hello._world. ) := 1.00 (0.000) 1

str.trim

str.trim(string,variable)

str.trim(string,variable,string)

This primitive will unify or substitue its second term with its first term trimmed of any empty spaces at the
start and end of the string. For example:

?- str.trim(" this is my string ",:s)

-> ( "this is my string" ) := 1.00 (0.001) 1

When a third term is given, it will be a string which content will be trimmed from the first term instead of
the empty spaces:

?- str.trim("555-1234",:s,"555-")

-> ( "1234" ) := 1.00 (0.000) 1

91



str.trim.head

str.trim.head(string,variable)

str.trim.head(string,variable,string)

This primitive will unify or substitue its second term with its first term trimmed of any empty spaces at the
start of the string. When a third term is given, it will be a string which content will be trimmed from the
first term. For example:

?- str.trim.head(" this is my string ",:s)

-> ( "this is my string " ) := 1.00 (0.001) 1

?- str.trim.head("555-1234-555",:s,"555")

-> ( "-1234-555" ) := 1.00 (0.000) 1

str.trim.tail

str.trim.tail(string,variable)

str.trim.tail(string,variable,string)

This primitive will unify or substitue its second term with its first term trimmed of any empty spaces at the
end of the string. When a third term is given, it will be a string which content will be trimmed from the
first term. For example:

?- str.trim.tail(" this is my string ",:s)

-> ( " this is my string" ) := 1.00 (0.001) 1

?- str.trim.head("555-1234-555",:s,"555")

-> ( "555-1234-" ) := 1.00 (0.000) 1

5.17 Typing

This section describes primitives that can be used to check the type of any terms.

is.atom

is.atom(term)

The primitive will resolve to a truth value of 1 if the term is an atom, 0 otherwise. For example:

?- is.atom(4)

-> ( ) := 1.00 (0.000) 1

?- is.atom("hello world")

-> ( ) := 1.00 (0.000) 1

?- is.atom([a,b,c,d])

-> ( ) := 0.00 (0.000) 1

?- is.atom(neat)

-> ( ) := 1.00 (0.000) 1

is.binary

is.binary(term)

The primitive will resolve to a truth value of 1 if the term is a binary, 0 otherwise. For example:

92



?- is.binary(42)

-> ( ) := 0.00 (0.000) 1

?- is.binary(hello)

-> ( ) := 0.00 (0.001) 1

?- is.binary("the quick fox ...")

-> ( ) := 0.00 (0.000) 1

?- is.binary(’aGVsbG8sIHdvcmxkIQA=’)

-> ( ) := 1.00 (0.000) 1

is.data

is.data(term)

The primitive will resolve to a truth value of 1 if the term is a data, 0 otherwise. For example:

?- is.data([2,4,2,0.5])

-> ( ) := 0.00 (0.000) 1

?- daa.make(real32,[2,4,2,0.5],:D), is.data(:D)

-> ( ) := 1.00 (0.000) 1

is.even

is.even(number)

The primitive will resolve to a truth value of 1 if the term is an even number, 0 otherwise. For example:

?- is.even(3)

-> ( ) := 0.00 (0.000) 1

?- is.even(4)

-> ( ) := 1.00 (0.000) 1

is.final

is.final(term)

The primitive will resolve to a truth value of 1 if the term is final that is isn’t an unbound variable or doesn’t
(recursively) contains any unbound variable. For example:

?- is.final(5)

-> ( ) := 1.00 (0.000) 1

?- is.final([5,a])

-> ( ) := 1.00 (0.000) 1

?- is.final([5,:a])

-> ( :a ) := 0.00 (0.000) 1

is.func

is.func(term)

The primitive will resolve to a truth value of 1 if the term is a functor, 0 otherwise. For example:

93



?- is.func(66)

-> ( ) := 0.00 (0.000) 1

?- is.func(hello)

-> ( ) := 0.00 (0.000) 1

?- is.func(hello(world))

-> ( ) := 1.00 (0.000) 1

is.frame

is.frame(term)

The primitive will resolve to a truth value of 1 if the term is a frame, 0 otherwise. For example:

?- is.frame(hello)

-> ( ) := 0.00 (0.000) 1

?- is.frame({})

-> ( ) := 1.00 (0.000) 1

?- is.frame({a = 1, b = 2})

-> ( ) := 1.00 (0.000) 1

is.list

is.list(term)

The primitive will resolve to a truth value of 1 if the term is a list, 0 otherwise. For example:

?- is.list(34)

-> ( ) := 0.00 (0.000) 1

?- is.list([a,b,c,d])

-> ( ) := 1.00 (0.000) 1

is.number

is.number(term)

The primitive will resolve to a truth value of 1 if the term is a number, 0 otherwise. For example:

?- is.number(3)

-> ( ) := 1.00 (0.055) 1

?- is.number(hello)

-> ( ) := 0.00 (0.000) 1

is.odd

is.odd(number)

The primitive will resolve to a truth value of 1 if the term is an odd number, 0 otherwise. For example:

?- is.odd(3)

-> ( ) := 1.00 (0.000) 1

?- is.odd(4)

-> ( ) := 0.00 (0.000) 1

94



is.primitive

is.primitive(symbol)

The primitive will resolve to a truth value of 1 if the symbol given as term is the name of an existing primitive.
0 otherwise. For example:

?- is.primitive(console.puts)

-> ( ) := 1.00 (0.000) 1

?- is.primitive(print)

-> ( ) := 0.00 (0.000) 1

is.quirk

is.quirk(term)

The primitive will resolve to a truth value of 1 if the term is a quirk, 0 otherwise. For example:

?- is.quirk(hello)

-> ( ) := 0.00 (0.000) 1

?- is.quirk(hello^5)

-> ( ) := 1.00 (0.000) 1

is.range

is.range(term)

The primitive will resolve to a truth value of 1 if the term is a range, 0 otherwise. For example:

?- is.range(<1|10>)

-> ( ) := 1.00 (0.000) 1

?- is.range(231)

-> ( ) := 0.00 (0.000) 1

is.regexp

is.regexp(term)

The primitive will resolve to a truth value of 1 if the term is a regexp, 0 otherwise. For example:

?- is.regexp(42)

-> ( ) := 0.00 (0.001) 1

?- is.regexp(’regexp("\d+"))

-> ( ) := 1.00 (0.000) 1

is.string

is.string(term)

The primitive will resolve to a truth value of 1 if the term is a string, 0 otherwise. For example:

95



?- is.string(3)

-> ( ) := 0.00 (0.000) 1

?- is.string(hello)

-> ( ) := 0.00 (0.001) 1

?- is.string("hello, world!")

-> ( ) := 1.00 (0.000) 1

is.symbol

is.symbol(term)

The primitive will resolve to a truth value of 1 if the term is a symbol, 0 otherwise. For example:

?- is.symbol(3)

-> ( ) := 0.00 (0.000) 1

?- is.symbol(hello)

-> ( ) := 1.00 (0.000) 1

?- is.symbol("hello, world!")

-> ( ) := 0.00 (0.000) 1

is.variable

is.variable(term)

The primitive will resolve to a truth value of 1 if the term is an unbound variable, 0 otherwise. For example:

?- is.variable(:h)

-> ( :h ) := 1.00 (0.000) 1

?- is.variable(5)

-> ( ) := 0.00 (0.000) 1

?- set(:h,5), !is.variable(:h)

-> ( 5 ) := 1.00 (0.000) 1

5.18 Vector, Matrix and Quaternion

This section describes primitives that can be used to manipulate lists that represent vectors, matrices and
quaternions.

mat.apply

mat.apply(list,symbol,list,variable|term)

The primitive mat.apply will apply the transformation described in a matrix (first term) to a vector (third
term), and unifies or substitues the resulting vector to the fourth term. The second term is expected to be
a symbol which indicate how the transformation must be applied based on the type of vector the third term

is: point, direction or vector. For example:

?- qat.euler(:Q,[0,0,90]), mat.make([0,0,0],:Q,:M), mat.apply(:M,direction,[1,0,0],:v)

-> ( [0.000000, 1, 0] ) := 1.00 (0.001) 1

If the third term is an unbound variable and the fourth term is a list, the primitive will execute the inverse
transformation:

?- qat.euler(:Q,[0,0,90]), mat.make([0,0,0],:Q,:M), mat.apply(:M,direction,:v,[0,1,0])

-> ( [1, 0.000000, 0] ) := 1.00 (0.000) 1

96



mat.make

mat.make(list,list,variable|term)

This primitive will create a matrix base transformation, using the first term as a translation vector and the
second term as the rotation (quaternion). It will unifies or substitues the resulting matrix to the third term.
For example:

?- qat.euler(:Q,[0,0,90]), mat.make([0,0,0],:Q,:M), mat.apply(:M,direction,[1,0,0],:v)

-> ( [0.000000, 1, 0] ) := 1.00 (0.001) 1

qat.add

qat.add(list,list,variable|term)

The primitive will add two rotations expressed in quaternions (the two first term) and substitues the resulting
quaternion to the third term. For example:

?- qat.euler(:Q1,[0,0,90]), qat.euler(:Q2,[90,0,00]), qat.add(:Q1,:Q2,:Q), qat.euler(:Q,:e)

-> ( [0, 89.999993, 89.999993] ) := 1.00 (0.001) 1

qat.apply

qat.apply(list,list,variable|term)

qat.apply(list,variable|term,list)

The primitive will apply the rotation expressed in the quaternion (the first term) to a vector (the second
term) and unifies or substitues the result vector to the third term. If the second term is an unbound variable

and the third is a vector, the primitive will apply the inverse rotation. For example:

?- qat.euler(:Q,[0,0,90]), qat.apply(:Q,[1,0,0],:v)

-> ( [0, 1.000000, 0] ) := 1.00 (0.001) 1

?- qat.euler(:Q,[0,0,90]), qat.apply(:Q,:v,[0,1,0])

-> ( [1.000000, 0, 0] ) := 1.00 (0.001) 1

qat.euler

qat.euler(list,variable|term)

qat.euler(variable|term,list)

The primitive will extract the Euler angles (as a list, in degrees) from a quaternion expressed in a list and
unifies or substitues the second term with it. If the first term is an unbound variable, the primitive will unify
or substitue it with a quaternion build from the given Euler angles. For example:

?- qat.euler(:q,[45,0,180])

-> ( [-0.000000, -0.382683, 0.923880, -0.000000] ) := 1.00 (0.001) 1

?- qat.euler([-0.000000, -0.382683, 0.923880, -0.000000],:e)

-> ( [44.999962, 0, 180.000005] ) := 1.00 (0.000) 1

97



qat.length

qat.length(list,variable|number)

The primitive will compute the length of a quaternion (the firs term) and substitues the result to the second
term. For example:

?- qat.euler(:Q,[180,0,90]), qat.length(:Q,:l)

-> ( 1.000000 ) := 1.00 (0.000) 1

qat.sub

qat.sub(list,list,variable|term)

The primitive will substract two rotations expressed in quaternions (the two first term) and substitues the
resulting quaternion to the third term. For example:

?- qat.euler(:Q1,[0,0,90]), qat.euler(:Q2,[90,0,00]), qat.sub(:Q1,:Q2,:Q), qat.euler(:Q,:e)

-> ( [0, 270.000008, 90.000003] ) := 1.00 (0.001) 1

vec.add

vec.add(list,list|number,variable|term)

This primitive will add two vectors (the two first term) and unifies or substitues the result to the third term.
If the second term is a number that value will be added to each component of the vector. For example:

?- vec.add([0,0,0],[1,-1,1],:v)

-> ( [1, -1, 1] ) := 1.00 (0.000) 1

?- vec.add([0,0,0],1,:v)

-> ( [1, 1, 1] ) := 1.00 (0.000) 1

If the second term is an unbound variable and the third term is a list, the primitive will unify the second
term with the vector substraction of its third term with the first:

?- vec.add([0,0,1],:v,[3,2,1])

-> ( [3, 2, 0] ) := 1.00 (0.000) 1

vec.angle

vec.angle(list,list,variable|number)

This primitive will will compute the angle (in degree) between two given normalized direction (the first and
second terms) and unifies or substitues it to the third term. For example:

?- vec.angle([1,0,0],[0,1,0],:v)

-> ( 90 ) := 1.00 (0.000) 1

98



vec.angle.signed

vec.angle.signed(list,list,list,variable|number)

This primitive will will compute the signed angle (in degree) between two given normalized direction (the
first and second terms) given an axis (the third term) and unifies or substitues it to the fourth term. For
example:

?- vec.angle.signed([1,0,0],[0,1,0],[0,0,1],:v)

-> ( 90 ) := 1.00 (0.000) 1

vec.dist

vec.dist(list,list,variable|number)

This primitive will will compute the distance between two given points (the first and second terms) and
unifies or substitues it to the third term. For example:

?- vec.dist([0,0,0],[1,2,4],:d)

-> ( 4.582576 ) := 1.00 (0.000) 1

vec.div

vec.div(list,list|number,variable|term)

This primitive will dive two vectors (the two first term) and unifies or substitues the result to the third term.
If the second term is a number that value will be divided from each component of the vector. For example:

?- vec.div([2,4,6],[2,2,2],:v)

-> ( [1, 2, 3] ) := 1.00 (0.000) 1

?- vec.div([2,4,6],2,:v)

-> ( [1, 2, 3] ) := 1.00 (0.000) 1

If the second term is an unbound variable and the third term is a list, the primitive will unify the second
term with the inverse operation:

?- vec.div([2,4,6],:v,[1,2,3])

-> ( [2, 2, 2] ) := 1.00 (0.000) 1

vec.length

vec.length(list,variable|number)

This primitive will compute the length of the vector (the first term) and unifies or substitues with the second
term. For example:

?- vec.length([2,4,6],:l)

-> ( 7.483315 ) := 1.00 (0.000) 1

99



vec.mul

vec.mul(list,list|number,variable|term)

This primitive will multiply two vectors (the two first term) and unifies or substitues the result to the third
term. If the second term is a number that value will be multiplied to each component of the vector. For
example:

?- vec.mul([1,2,3],[1,2,3],:v)

-> ( [1, 4, 9] ) := 1.00 (0.000) 1

?- vec.mul([1,2,3],2,:v)

-> ( [2, 4, 6] ) := 1.00 (0.000) 1

If the second term is an unbound variable and the third term is a list, the primitive will unify the second
term with the inverse operation:

?- vec.mul([1,2,3],:v,[2,4,6])

-> ( [2, 2, 2] ) := 1.00 (0.000) 1

vec.norm

vec.norm(list,variable|list)

This primitive will normalized a vector (the first term) and unifies or substitues with the second term. For
example:

?- vec.norm([2,4,6],:l)

-> ( [0.267261, 0.534522, 0.801784] ) := 1.00 (0.000) 1

vec.sub

vec.sub(list,list|number,variable|term)

This primitive will substract two vectors (the two first term) and unifies or substitues the result to the third
term. If the second term is a number that value will be substracted from each component of the vector. For
example:

?- vec.sub([0,0,0],[1,-1,1],:v)

-> ( [-1, 1, -1] ) := 1.00 (0.000) 1

?- vec.sub([0,0,0],-1,:v)

-> ( [1, 1, 1] ) := 1.00 (0.000) 1

If the second term is an unbound variable and the third term is a list, the primitive will unify the second
term with the reverse operation:

?- vec.sub([0,0,1],:v,[3,2,1])

-> ( [-3, -2, 0] ) := 1.00 (0.000) 1

6 Elementals

This section provides some details on all the elementals supported by the runtime. For each one, the list of
supported properties and accepted values will be given as well as some explanation on their use cases.

100



MRKCBFSolver

This elemental class is the most common one used in fizz . It is in fact the default and can handle statements

as well as prototypes. It implement a breadth-first solving which is optimized for concurrency, therefore it is
not the most efficient solver with regard to time and memory usage.

This elemental supports the following properties:

p.limit the maximum number of prototype the object will accept when
they are defined.

s.limit the maximum number of statement the object will accept when
they are asserted.

replies.are.triggers set to no to instruct the elemental to not considere replies

as potential triggers.
memoize set to yes to instruct the elemental to use memoization (that is to

temporary cache replies to queries in order to avoid inferring the
same thing multiple time).

reply.on set to success to instruct the elemental to only reply to query when
successful. Set to failure to have it only reply on failure only.

cascade when set to yes, the elemental will only jump to try another
prototype when the previous one have failed.

cascade.tmo timeout value (in seconds) before attempting another prototype when
waiting for a reply.

spunky set to yes to instruct the elemental to discard queries that it has
received and solved as soon as possible. When set to no (the default), the
elemental will keep the queries going for longer in case of late replies.

When such elemental is set to memoize, cached statements will be periodically cleared at a a frequency set
by the mzttl substrate configuration.

MRKCDFSolver

This elemental class can handle statements as well as prototypes and implement a depth-first which is a more
efficient solver than the default one, altought not always the right choice.

This elemental supports the following properties:

tmo.first timeout value (in seconds) when waiting for the first response to a query
initiated by the elemental. Default is 0.1s

tmo.after timeout value (in seconds) when waiting for further response to a query
initiated by the elemental. Default is 0.08s

tmo.ticks how often the elemental checks if any query timedout. Default is 0.05s.

Note that trigger predicates are. at the moment, not supported with this solver.

MRKCCSVStore

The elemental MRKCCSVStore provides a way to access statements stored inside a CSV file without having to
import the file. While this a slowest way to retreive statements, it has the advantage of having lower memory
consumption as none of the data stored in the CSV file are loaded in memory until it is returned as answers
to a query.

This elemental supports the following properties:

101



filepath the path and file name of the CSV file to be used as source.
delimiter a string representing the character used as the column separator.
columns a list describing the conversion to be applied to each of the columns

that will be read from the file. The number of terms in the
list is considered to be the expected number of columns in
each lines of the file. If this property is not specified, each columns
will be converted to best fit its content.

offset the number of lines from the file to be skipped from the start of
the file (e.g. to skip a header). If this property is not specified
no offset will be applied.

length the number of lines (from the offset) to be considered when
scanning the file. If this property is not specified, the file will
be scanned to its end.

no.match if set to the symbol fail, the elemental will always
produce a statement with a truth value of 0 when there was no
match to a query.

offloaded if set to the value yes, the scanning of the file will be offloaded
to a background thread. This will lower the load on the substrate

at the cost of a bit more lag in getting answers.
arity arity of the statements (if the number of columns is greater than

the arity, the extra will be grouped into a list as the last term).

The terms in the columns list can be any of the following:

number the column is a number.
symbol the column is a symbol.
string the column is a string.
ignore the colum is to be ignored.
select the colum format should be selected based on the content of

each line.

For example, the following elemental provides statements based on the cars database stored in a CSV file:

1 car {

2
3 class = MRKCCSVStore,

4 filepath = "./etc/data/cars.csv",

5 delimiter = ";",

6 offset = 2,

7 no.match = fail,

8 offloaded = yes

9
10 } {}

MRKCSBFStore

This elemental provides a way to store and retreive statements from a binary file. While it is a slower way
to retreive statements, it has the advantage of having lower memory consumption as none of the data stored
in the file is loaded in memory until it is returned as answers to a query.

This elemental supports the following properties:

102



filepath the path and file name of the binary file to be used as source.
index the property is interpreted as the (or multiple when a list is given)

index of the statement’s terms that we which the statements to be
indexed upon. Judicious indexing will speed-up retreival of statements.

no.match if set to the symbol fail, the elemental will always
produce a statement with a truth value of 0 when there was no
match to a query.

offloaded if set to the value yes, access to the file will be offloaded
to a background thread. This will lower the load on the substrate

at the cost of a bit more lag in processing.
verbose an optional boolean value (or a symbol true, false) to

instructs the elemental to output more traces in the console.

For example, the following elemental setup a statement store in which we will import the data from
./etc/data/cars.csv:

1 car {

2
3 class = MRKCSBFStore,

4 filepath = "./cars.sbfz",

5 offloaded = yes,

6 index = [0,9],

7 verbose = yes,

8 no.match = fail

9
10 } {}

The /tells console command can be used to instruct the elemental to perform any of the following actions:

compact requests the store to attempt to reduce its file size.
optimize requests the store to be optimized for better performance.
stats prints some statistics about the content of the store.
validate forces a sanity check on the store.
clear empties the store of all stored statements.

Note that depending on the number of stored statements, many of the above command may take a while to
complete.

MRKCStopper

This elemental class can be used to reply by failure to any query that is left un-answered for a given time.
The elemental watches queries and wait for corresponding replies.

This elemental supports the following properties:

qtmo timeout value (in seconds) when waiting for a response to a query. Default is 0.15s
tick how often the elemental checks if any query timed-out. Default is 0.05s.
labels a list of the query labels the elemental must watch for.

FZZCFUNRunner

This elemental class supports mixing imperative style with logic style by providing a way to execute expres-
sions build out of functors using the same terms commonly used in logical statements (which will be refered

103



to as f-expressions). Code to be executed can be submitted to the elemental via a simple set of query. Each
request, is considered a thread and will then run cooperatively with other submitted f-expression.

An f-expression can be either a list of functors to be executed sequentially or a single functor. Each functor

can have for arguments other functors or lists of functors. The use of variable terms will be understood in a
f-expression as a shortcut to using the primitive get. Finally, each functor is expected to return a fizz term.
For example, the following code would print to the console the value 5: print(add(3,2)).

Each thread is running within its own execution context, which means that any given variable is only acces-
sible in the thread it was created in. Unlike in most imperative language, all variables in a thread are global
even when they are first referenced within a block.

This elemental supports the following properties:

bsize maximum number of builtin calls before a thread get interrupted. Default is 32
functions label (as a symbol) of the query to publish when mapping a functor

to a function.
primitives label (as a symbol) of the query to publish when mapping a functor

to a primitive.

The elemental will reply to the following queries:

eval execute some code (the 2nd term) synchronously and unify #funx(eval,add(4,:x),:y)

the result with the 3rd term

start execute some code (the 2nd term) asynchronously and unify #funx(start,do(something),:uuid)

the 3rd term with a term that uniquely identify the thread

stop stop the execution of a thread identified by its identifier #funx(stop,:uuid)

given as the 2nd term.
cancel cancel the execution of a thread identified by its identifier #funx(cancel,:uuid)

given as the 2nd term.
list unify the 2nd term with a list of all threads currently running #funx(list,:l)

value unify the 3rd term with the value returned by thread identified #funx(state,:uuid,:v)

by its identifier (the 2nd term). When a thread is still running,
its value will be nil.

state unify the 3rd term with the state of a thread identified #funx(state,:uuid,:s)

by its identifier (the 2nd term). The state will either be
executing or completed

send send the 3rd term to the thread identified #funx(send,:uuid,[1,2,3])

by its identifier (the 2nd term).

state and value queries won’t be answered if the thread is unknown. The time-to-live value of the elemental

will be used to determinate when a completed thread’s value can be forgotten.

f-expressions’ functor can be calls to known builtins, primitives or functions. The difference is minimum, but
important. Builtins are executed directly by the elemental without need for a query to be sent out. Here’s
a list of all the supported builtins:

is.atom(term) return 1 if term is an atom, 0 otherwise.
is.number(term) return 1 if term is a number, 0 otherwise.
is.string(term) return 1 if term is a string, 0 otherwise.
is.symbol(term) return 1 if term is a symbol, 0 otherwise.
is.binary(term) return 1 if term is a binary, 0 otherwise.
is.list(term) return 1 if term is a list, 0 otherwise.
is.func(term) return 1 if term is a functor, 0 otherwise.

104



is.frame(term) return 1 if term is a frame, 0 otherwise.
is.range(term) return 1 if term is a range, 0 otherwise.
is.regexp(term) return 1 if term is a regexp, 0 otherwise.
is.guid(term) return 1 if term is a guid, 0 otherwise.
is.quirk(term) return 1 if term is a quirk, 0 otherwise.
is.data(term) return 1 if term is a data, 0 otherwise.
var.capture(labels,mode) capture all or some of the variables in the thread into a frame. If mode is

inclusive, labels will be assumed to be a list of all the variables to capture. If
it is exclusive, the call will capture all variables but the one listed in labels.

var.release(frame) take the frame passed as argument and use each key/value pairs as a variable

to be set.
is.canceled() test if the thread has been canceled.
recv() read the next term that was sent (with the send command) to the thread. Returns nil

if there is no term available.
peek(label,term?) access the thread local data and retreive a previously stored value by its label.

If a term is provided, it will be returned if the identifier is unknown.
poke(label,value) access the thread local data and store a value (2nd argument) for a given label.
zero(label) remove a value from the thread local data given its label.
set(label,value) set the value of a variable identified by its label. The call will return the value.
get(label) return the value of a given variable.
inc(label) increase the value stored in the variable identified by its label by 1.
dec(label) decrease the value stored in the variable identified by its label by 1.
eq(term,term) return 1 if its two terms are equal, 0 otherwise.
neq(term,term) return 0 if its two terms are equal, 1 otherwise.
gt(term,term) return 1 if the first term is greater than the 2nd, 0 otherwise.
gte(term,term) return 1 if the first term is greater-or-equal to the 2nd, 0 otherwise.
lt(term,term) return 1 if the first term is lesser than the 2nd, 0 otherwise.
lte(term,term) return 1 if the first term is lesser-or-equal to the 2nd, 0 otherwise.
and(term+) return the boolean and of all its arguments.
or(term+) return the boolean or of all its arguments.
xor(term+) return the boolean xor of all its arguments.
not(term) return the boolean not of term.
add(term+) return the sum of all its arguments.
sub(term+) return the subtraction of all its arguments.
mul(term+) return the multiplication of all its arguments.
div(term+) return the division of all its arguments.
div.int(term+) return the integer division of all its arguments.
lst.item(list,index) return the item at a given index in a list.
lst.length(list) return the number of items in a list.
lst.head(list) return the first item in the list, or nil if empty.
lst.tail(list) return the last item in the list, or nil if empty.
lst.rest(list) return a new list minus the first item in the list.
lst.make(term+) return a list of all the arguments.
frm.fetch(frame,label,term?) return the value associated with a given label in a frame. If the label doesn’t exists,

nil will be returned unless term is provided.
frm.store(frame,label,value) return a new frame with a new value associated with a given label.
sleep(time) put the calling thread to sleep for the specified time (in ms).
publish(label,terms,value) publish a statement build from a em label, a list of terms and a truth value.
await(label,timeout) block and wait for any statement to be published with the given label or until a

timeout (in ms). The result will be the list of terms, or the value 0

if timeout occured.
call(label,terms) takes the label of a functor to be executed a list of terms to be passed to it

and execute it then returns whatever that call returned.
yield() force the calling thread to yield to any other concurrently executing threads.
times(functor+) time the execution of its argument and return the elapsed time (in s).

105



When it comes to control structure, f-expressions supports the following:

if(expr,left,right) if expr evaluate to 1, the left instruction will be executed, otherwise right one will be.
do(code,expr) will execute the code instruction and execute again as long as expr evaluate to 1.
while(expr,code) will execute the code instruction as long as expr evaluate to 1.
loop(count,code) will execute the code instruction as many times as requested with the value count.
break() will break the execution of any loop/do/while/switch.
return(value) will cause the execution of any thread/function to stop and return the given value.
result(value) if the thread was started to be synchronous, the call will provides an answer to it

without causing the thread to end.
foreach(var,list,code) will execute the code for each item in the list, and set the variable for which the label

was specified (var) to the item at each loop.
switch(value,block) will execute a list of instruction where each case() will compare to the value.
case(value,code) will execute the code if value match the parent switch()’s value.
retry(code,value) will keep executing the code as long it return value.

The way you can extend the capabilities of f-expression is by defining primitives and functions. Primitives

are a way to connect an imperative execution to a logical query, with the caveat that the f-expression will
only accept the first answer to a primitive leading to a query. To define a primitive, you simply as to create
an elemental with the same label as the one specified in the elemental’s property primitives and add one
(or more) prototype(s) per primitive. Note that the entrypoint of the prototype must have an arity of three
and be: the label of the primitive, a list accepting the arguments to the call, the return value. Here’s an
example where we define the car and cdr primitives:

1 funx.primitive {

2
3 (car,[[:h|_]],:h)^ :- true;

4 (cdr,[[_|:r]],:r)^ :- true;

5
6 }

Altough the example above is simplistic, note that a primitive can be implemented by any logical combina-
tion that may be necessary.

Functions can be defined in a similar way than primitives are, except they are not implemented as prototypes
but as statements. And thus, they are queried only once and the body of the function is cached. Like the
primitives, each functions must be defined in an elemental with for label the one specified in the functions
property. Each statement must have an arity of three: the label of the function, a list of symbols that are
the variables to get assigned the arguments passed to the call, and a list of instructions. Here’s an example
of a function that will compute the sum of a list using the foreach() instruction:

1 funx.function {

2
3 (sum,[l],[

4 set(s,0),

5 foreach(v,:l,[

6 set(s,add(:s,:v))

7 ]),

8 return(:s)

9 ]);

10
11 }

106



A cached function will be invalidated, if they may have been replaced (e.g. by reloading the file in which
the elemental in which it resides). Also note, that primitives and functions can be defined by any number of
elementals. For examples of f-expressions, see the samples funx.fizz, funx2.fizz and funx3.fizz.

There is three new constants that can be queried during the execution of the f-expression: $path, $uid and
label. The former will return an atom that uniquely identify the function (taking the call stack into action)
in which the call is made. The second will returns the unique identifier of the thread executing the code, and
the latter will provide the name of the executing function (or nil) if the calling code is running outside of
a function.

FZZCRandomizer

This elemental can be used to inject some random activations by firing statements with a random number or
term at a given interval. For example, we can define such elemental and instruct it to pick a random number
between 1550 and 1650:

1 rand {

2 class = FZZCRandomizer,

3 min = 1550,

4 max = 1670,

5 mod = 2

6 } {

7
8 }

If we then load it in the runtime environment, it will starts firing at regular interval (the mod value indi-
cates every other interval). If we use the /spy command, we can observe the generated statements being
broadcasted through the substrate:

?- /spy(append,rand)

spy : observing rand

spy : S rand(1637) := 1.00

spy : S rand(1643) := 1.00

spy : S rand(1576) := 1.00

spy : S rand(1610) := 1.00

spy : S rand(1608) := 1.00

spy : S rand(1597) := 1.00

spy : S rand(1636) := 1.00

spy : S rand(1618) := 1.00

spy : S rand(1563) := 1.00

spy : S rand(1565) := 1.00

If we now make use of a rand predicate in a prototype as follows:

1 male {

2
3 (james1, 1566) := 1.0;

4 (charles1, 1600) := 1.0;

5 (charles2, 1630) := 1.0;

6 (james2, 1633) := 1.0;

7 (george1, 1660) := 1.0;

8 (_,_) := 0.0;

9
10 }

107



11
12 dad {

13
14 (:x) :- @rand(:y) , #male(:x,:y);

15
16 }

We will activate a query on the male predicate each time a new rand statement is broadcasted as we can see
below:

?- /spy(append,rand,dad)

spy : observing rand

spy : observing dad

spy : S rand(1627) := 1.00

spy : S rand(1580) := 1.00

spy : S rand(1618) := 1.00

spy : S rand(1571) := 1.00

spy : S rand(1654) := 1.00

spy : S rand(1630) := 1.00

spy : S dad(charles2) := 1.00

spy : S rand(1622) := 1.00

spy : S rand(1579) := 1.00

spy : S rand(1582) := 1.00

spy : S rand(1632) := 1.00

spy : S rand(1617) := 1.00

spy : S rand(1566) := 1.00

spy : S dad(james1) := 1.00

spy : S rand(1598) := 1.00

spy : S rand(1663) := 1.00

spy : S rand(1666) := 1.00

If the min and max properties are not specified, the elemental will generate random numbers between 0 and
1. If only the minimum value is omitted, it will default to 0. If it is the maximum value that is missing, it
will default to the maximum possible value for a floating point number.

Instead of generating number, we can instructs the elemental to randomly pick an element from a list. To
do that, we simply specify the list using the label values in the properties. Here’s the elemental we used
earlier rewritten to restrict the possible numbers:

1 rand {

2 class = FZZCRandomizer,

3 values = [1566,1600,1630,1633,1660]

4 } {

5
6 }

This time around, since we are only picking from the years present in the male knowledge we get dad

statements right away:

?- /spy(append,rand,dad)

spy : observing rand

spy : observing dad

spy : S rand(1566) := 1.00

spy : S dad(james1) := 1.00

108



spy : S rand(1600) := 1.00

spy : S dad(charles1) := 1.00

spy : S rand(1633) := 1.00

spy : S dad(james2) := 1.00

spy : S rand(1633) := 1.00

spy : S dad(james2) := 1.00

spy : S rand(1630) := 1.00

spy : S dad(charles2) := 1.00

spy : S rand(1566) := 1.00

spy : S dad(james1) := 1.00

spy : S rand(1600) := 1.00

spy : S dad(charles1) := 1.00

spy : S rand(1633) := 1.00

spy : S dad(james2) := 1.00

FZZCTicker

This elemental can be used to activate other elemental at a regular interval by firing a statement. For
example:

1 tick {

2 class = FZZCTicker,

3 mod = 4

4 } {

5
6 }

If we then load it in the runtime environment, it will starts firing at regular interval (the mod value indicates
how often based on the substrate’s pulse). If we use the /spy command, we can observe the generated
statements being broadcasted through the substrate:

?- /spy(append,tick)

spy : observing tick

spy : S tick(9, 1512157341.254642) := 1.00 (15.000000)

spy : S tick(10, 1512157342.254716) := 1.00 (15.000000)

spy : S tick(11, 1512157343.254030) := 1.00 (15.000000)

spy : S tick(12, 1512157344.254033) := 1.00 (15.000000)

spy : S tick(13, 1512157345.253880) := 1.00 (15.000000)

spy : S tick(14, 1512157346.254291) := 1.00 (15.000000)

spy : S tick(15, 1512157347.254672) := 1.00 (15.000000)

The first term in the published statement is a cycle counter (which will be saved by the elemental when it
is saved or frozen). The second term is the current time (in seconds since Epoc, GMT). Instead of basing
the ticking on the substrate’s pulse, the property tick can be used to indicate the interval in seconds. For
example, to have the tick statement firing every 1.5 seconds, we would write:

1 tick {

2 class = FZZCTicker,

3 tick = 1.5

4 } {

5
6 }

109



MRKCLettered

The MRKCLettered elemental can only handle statements. It is meant to be used as a way to lower runtime

cost when it is known that a particular Knowledge will never contains any prototypes. Here are the properties
specific to this class:

s.limit the maximum number of statement the object will accept when
they are asserted.

no.match if set to the symbol fail, the object will always produce a
statement with a truth value of 0 when there was no match to
a query.

index the property is interpreted as the (or multiple when a list is given)
index of the statement’s terms that we which the statements to be
indexed upon. Judicious indexing will speed-up retreival of statements

(see the sample cars.fizz for an example).
nearest.only if set to the symbol yes, the object will always answers queries with

constrained variables using the primtive aeq with the closest match
possible.

recall.frq how often to check stored statements for possible ones to purge.
recall.ttl initial time-to-live value for any asserted statements.
recall.add how much to add to a statement time-to-live each time it is used in a reply.
recall.mul how much to increase (ttl + mul * ttl) to a statement time-to-live each

time it is used in a reply.
recall.thd threshold for committing statement to permanent storaga.

In order for the recall ability of the class to work. The statements must include a property called stp which
contains the timestamp of the statement (assigned to %now for example when the statement is created).
As long as the timestamp of the statement plus its time-to-live is after the current time each time the
elemental checks, the statement will be conserved. Otherwise, it will be removed.

7 Modules

This section provides some details on all the optional modules that can be loaded in the runtime and which
elementals they provides. Like in the previous section, the list of supported properties and accepted values
will be given as well as some explanation on their use cases. In order to be able to use the elementals detailed
in this section, the corresponding module in which it resides must be loaded in fizz using either the /use

command or via a solution file.

LGR

The modLGR module provides an interface to the Link Grammar Parser3 by the Carnegie Mellon University.
It is a syntactic parser for (mainly) English sentences. The integration of the parser to fizz allows for a string

to be parsed and its syntactic components bto e made available in a series of lists.

FZZCLGRProcessor

This elemental is the main interface to Link Grammar Parser. It supports the following properties:

datapath the path to the root folder containing the parser’s data.
A version of it is included in fizz in etc/data/lgr

language the language to be parsed by the elemental. At this
moment, only English (us is supported.

load.on.attach when set to yes, the elemental will preload the
parser data when it is attached to the substrate. Otherwise,
it will wait the first query to do so.

3http://www.link.cs.cmu.edu/link/

110



Let’s look at an example (for more details, check the sample etc/samples/linkg.fizz). In a new fizz source
file, we add the following:

1 lgr.parse {

2 class = FZZCLGRProcessor,

3 datapath = "./etc/data/lgr",

4 language = "us",

5 load.on.attach = yes

6 } {}

The expected arity for any query to the elemental we have now created in the substrate is five. The first
term is the string to be parsed followed by four unbound variables:

?- #lgr.parse("the quick brown fox jumps over the lazy dog.",:ws,:ls,:ln,:cn)

-> ( [[[], nil], [[], "the"], [[a], "quick"], [[a], "brown"], [[n], "fox"], [[v], "jumps"], [[], "

over"], [[], "the"], [[a], "lazy"], [[n], "dog"], [[], "."], [[], nil]] , [[X, [p], 0, 10], [WV

, [], 0, 5], [W, [d], 0, 4], [S, [s, s], 4, 5], [D, [s, x], 1, 4], [A, [], 2, 4], [A, [], 3,

4], [MV, [p], 5, 6], [J, [s], 6, 9], [D, [s, x], 7, 9], [A, [], 8, 9], [RW, [], 10, 11]] , [0,

[1, [2, 0, [3, [4, 1, [5, 2, [6, 3, 4]]], [7, 5, [8, 6, [9, 7, [10, 8, 9]]]]]], 5], [11, 10,

11]] , [S, [[NP, [1, 2, 3, 4]], [VP, [5, [PP, [6, [NP, [7, 8, 9]]]]]], 10]] ) := 1.00 (0.011) 1

The first variable will be unified with the list of all the words which have been detected in the sentence. The
second variable will be unified with the list of all links (that is the relationships between words). The third
variable will unify with a tree describing how the sentence is structured. The fourth, and final, variable will
be unified to a tree which describes the components in the sentence as generated by the Phrase Parser4.

We will now defines the contents of each of the list, starting with the words list:

?- #lgr.parse("the quick brown fox jumps over the lazy dog.",:ws,_,_,_)

-> ( [[[], nil], [[], "the"], [[a], "quick"], [[a], "brown"], [[n], "fox"], [[v], "jumps"], [[], "

over"], [[], "the"], [[a], "lazy"], [[n], "dog"], [[], "."], [[], nil]] ) := 1.00 (0.021) 1

Each of the word is described as a list containing first a list of symbols which the parser calls subscripts,
followed by the actual word. In most cases, the word is represented as a string, except when the word isn’t
really a word, but what the parser calls LEFT-WALL or RIGHT-WALL ( that is the start or the end of the
sentence). In this example, the word brown is flagged with a indicating that it is an adjective where the word
jumps is flagged with a v as it is a verb.5

?- #lgr.parse("the quick brown fox jumps over the lazy dog.",_,:ls,_,_)

-> ( [[X, [p], 0, 10], [WV, [], 0, 5], [W, [d], 0, 4], [S, [s, s], 4, 5], [D, [s, x], 1, 4], [A,

[], 2, 4], [A, [], 3, 4], [MV, [p], 5, 6], [J, [s], 6, 9], [D, [s, x], 7, 9], [A, [], 8, 9], [

RW, [], 10, 11]] ) := 1.00 (0.011) 1

The second list contains all the links that compose the parsed sentence. Each of which is described by a
list containing four terms. The first one is a symbol representing the link-type6, followed by a list of the
subscripts. The third and fourth terms in the list are the index (in the words list) of the words that are
associated with the link.

4http://www.link.cs.cmu.edu/link/ph-explanation.html
5see section 3.3 in https://www.abisource.com/projects/link-grammar/dict/introduction.html for a list of the subscripts
6see https://www.abisource.com/projects/link-grammar/dict/index.html for details

111



?- #lgr.parse("the quick brown fox jumps over the lazy dog.",_,_,:ln,_)

-> ( [0, [1, [2, 0, [3, [4, 1, [5, 2, [6, 3, 4]]], [7, 5, [8, 6, [9, 7, [10, 8, 9]]]]]], 5], [11,

10, 11]] ) := 1.00 (0.011) 1

The third list contains how the links are connected into a tree describing the structure of the sentence. Each
of the sub-lists is composed of three terms, the first one being the index of the link in the links list. The
second and third terms can either be the index of the word or another node in the tree.

?- #lgr.parse("the quick brown fox jumps over the lazy dog.",_,_,_,:cn)

-> ( [S, [[NP, [1, 2, 3, 4]], [VP, [5, [PP, [6, [NP, [7, 8, 9]]]]]], 10]] ) := 1.00 (0.010) 1

Thr fourth list is a Penn tree-bank style phrase structure (a tree). Each lists that forms the tree has two
terms. The first one is a Penn type (as a symbol) and the second one is a list. Each terms in that list can
either be the index of the word or a list describing a new Penn type node of the tree.

WWW

The modWWW module provides ways for fizz to fetch data from existing REST services.

FZZCWebAPIGetter

The FZZCWebAPIGetter elemental performs a connection to a specific HTTP web service in order to respond
to a received query. Part of the query will be used to compose the URL. When the service replies, the JSON
document will be parsed and its content converted into a frame.

The elemental’s properties are the following:

headers an optional frame describing all the headers to be added to the
request

flags a set of symbols modifying the behavior of the JSON to frame

convertor. The flag stringify will keep all strings as string
terms, symbolize will force all strings to be converted as
symbols. The default behavior is to convert the strings that can be
considered symbol as such

url.host the scheme and hostname of the web service (http or https)
url.path the path of the requested resource
verbose an optional boolean value (or a symbol true, false) to

instructs the elemental to output more traces in the console

For example, to get any conversion rate from api.fixer.io, we would define the elemental as follow:

1 fixer.get {

2
3 class = FZZCWebAPIGetter,

4 url.host = "http://api.fixer.io",

5 url.path = "/latest",

6
7 } {

8
9 }

Whenever we want to query the latest conversion for said, the US Dollar, we woul query it as such:

112



1 ?- #fixer.get({ base = USD },:l)

2 -> ( [1525392000, 200, {Date = "Sun, 06 May 2018 02:40:35 GMT", Connection = "keep-alive",

3 Set-Cookie = "__cfduid=d70c6e9991dfeb2ae1ee6e8293a1622341525574434; expires=Mon, 06-May-19

4 02:40:34 GMT; path=/; domain=.fixer.io; HttpOnly", Cache-Control = "public, must-revalidate,

5 max-age=900", Last-Modified = "Fri, 04 May 2018 00:00:00 GMT", X-Deprecation-Message = "This

6 API endpoint is deprecated and will stop working on June 1st, 2018. For more information please

7 visit: https://github.com/fixerAPI/fixer#readme", Vary = "Origin", X-Content-Type-Options =

8 "nosniff", Server = "cloudflare", CF-RAY = "41681539a27192f4-SJC"}, {a__deprecation_message__ =

9 "This API endpoint is deprecated and will stop working on June 1st, 2018. For more information

10 please visit: https://github.com/fixerAPI/fixer#readme", base = USD, date = "2018-05-04",

11 rates = {AUD = 1.329700, BGN = 1.634100, BRL = 3.546300, CAD = 1.287500, CHF = 0.998410,

12 CNY = 6.359200, CZK = 21.308000, DKK = 6.223700, EUR = 0.835490, GBP = 0.737200,

13 HKD = 7.849600, HRK = 6.186000, HUF = 262.240000, IDR = 13978, ILS = 3.621200,

14 INR = 66.862000, ISK = 102.100000, JPY = 108.920000, KRW = 1076.400000, MXN = 19.156000,

15 MYR = 3.938000, NOK = 8.057500, NZD = 1.425900, PHP = 51.673000, PLN = 3.554400, RON = 3.895100,

16 RUB = 63.065000, SEK = 8.832800, SGD = 1.333600, THB = 31.755000, TRY = 4.257900,

17 ZAR = 12.628000}}] ) := 1.00 (0.400) 1

The list unified with the variable :l will contains four terms: a time stamp (UTC, expressed in seconds since
Unix epoch), an HTTP response status number (200 for Okay), a frame containing the response headers

received from the web site and a frame containing the data received as response.

FZZCWebAPIPuller

The FZZCWebAPIPuller elemental handles a temporary (but repeatable) connection to an HTTP web ser-
vice, from which data (in JSON format) are to be retreived. When the JSON document received as reply has
been parsed, its content will be converted into a frame, and the elemental will publish a statement containing
it. In order to be able to use this elemental, the module in which it resides (modWWW) must be loaded in fizz

using either the /use command or a solution file.

The elemental’s properties are the following:

tick the frequency (in seconds) at which the web service is to be pulled. When
that property isn’t set, the elemental will only fetch the data once

headers an optional frame describing all the headers to be added to the
request

flags a set of symbols modifying the behavior of the JSON to frame

convertor. The flag stringify will keep all strings as string
terms, symbolize will force all strings to be converted as
symbols. The default behavior is to convert the strings that can be
considered symbol as such

url a single string containing the URL of the requested service/path/query, or:
url.host the scheme and hostname of the web service (http or https)
url.path the path of the requested resource
url.query a frame describing the query, each of the label/value pair will be

concatenated into a query string
verbose an optional boolean value (or a symbol true, false) to

instructs the elemental to output more traces in the console

For example, to pull the conversion USD conversion rate from api.fixer.io, we would have:

1 web.conv.puller {

2
3 class = FZZCWebAPIPuller,

4 tick = 60.0,

113



5 url.host = "http://api.fixer.io",

6 url.path = "/latest",

7 url.query = { base = USD }

8
9 } {

10
11 }

The statement published at each successful pull, will have four terms: a time stamp (UTC, expressed in
seconds since Unix epoch), an HTTP response status number (200 for Okay), a frame containing the response
headers received from the web site and a frame containing the data received as response. For the example
above, a possible statement will be:

1 web.conv.puller(1518998400, 200, {Server = "nginx/1.13.8", Date = "Tue, 20 Feb 2018 04:44:55 GMT",

2 Connection = "keep-alive", Cache-Control = "public, must-revalidate, max-age=900",

3 Last-Modified = "Mon, 19 Feb 2018 00:00:00 GMT", Vary = "Origin",

4 X-Content-Type-Options = "nosniff"}, {base = USD, date = "2018-02-19", rates = {AUD = 1.263200,

5 BGN = 1.576000, BRL = 3.233400, CAD = 1.256400, CHF = 0.927720, CNY = 6.344400, CZK = 20.409000,

6 DKK = 6.001600, EUR = 0.805800, GBP = 0.713860, HKD = 7.822300, HRK = 5.994000, HUF = 250.730000,

7 IDR = 13553, ILS = 3.519200, INR = 64.253000, ISK = 100.480000, JPY = 106.560000, KRW = 1066.900000,

8 MXN = 18.544000, MYR = 3.890500, NOK = 7.782000, NZD = 1.355400, PHP = 52.458000, PLN = 3.340900,

9 RON = 3.756100, RUB = 56.463000, SEK = 7.989900, SGD = 1.313100, THB = 31.380000, TRY = 3.753000,

10 ZAR = 11.653000}})

CLU

The modCLU module supports the building of a cluster from instances of fizz running on several computers
(on the same network). This use a custom protocol build on top of UDP (multicast and unicast). While
transmission between multiple hosts isn’t garanteed to be delivered, the protocol does account for packet
losses and will attempt to resend packets when needed.

FZZCCLUGateway

FZZCCLUGateway is the elemental which provides a link between the local instance of fizz and the cluster.
For a cluster to work, most of the properties specific to this class must be identical on each instances. They
are:

114



MCAddress Multicast group address (as a string)
TXUDPPort Multicast group UDP port (for message)
CLUDPPort Multicast group UDP port (for control)
CLCadence Multicast group heartbeat frequency (in ms)
MCTimeout missing peer timeout (in ms)
XXTimeout RX/TX timeout (in ms per packet)
TXTimeout how long to keep a transmission around (in ms) for possible resends
SyCadence sync timestamp frequency (in ms, 0 for off)
TXCadence transmission frequency (in ms)
Bandwidth bandwidth restriction (in byte per ms)
TXSpacing interval of time between two consecutive transmissions (0 for none, the value is

assumed to be for a TX at capacity)
PkBLength usable UDP packet length (in bytes)
PkRetries missing packets retry count (0 for no limit)
PkWinSize size of the sliding window used to determinate if packets are considering missing

(0 for default)
RXCadence maximum elapsed time to spend processing received packets in one batch (in ms,

0 for no limit)
filters a list of the statements and predicates labels to be accepted for incoming and outgoing transmissions

Default values will be used for most of the properties except: MCAddress, TXUDPPort and CLUDPPort. It is
highly recommended to also provide a value for Bandwidth. It indicates how much of the bandwidth can be
used to send data, taking in consideration the medium (e.g. WiFi vs GigE) and the number of computers
that compose the cluster. For example, for 3 instances connected via a 100Mbps Ethernet, we would take
the theoretical bandwidth value of 12500 bytes per milliseconds and divide it by 3. To that we can also take
away a certain percentage (said 5) of it to account for other traffic, resulting in a value of 3958 bytes. When
it comes to minimizing lost packets, the receive and send buffers of the computers may need to be adjusted.

As an alternative to tweaking the Bandwidth value yourself, you can use the following three properties to
specify the cluster’s setup:

Bandwidth.value bandwidth available for the cluster (in byte per ms)
Bandwidth.peers number of peers in the cluster
Bandwidth.limit percentage of the bandwidth to reserve for the cluster usage

MLK

The modMLK module provides elementals dealing with Machine Learning tasks.

FZZCFFBNetwork

The FZZCFFBNetwork elemental manages a collection of feed-forward back propagation neural networks all
built from the same training data whose are collected by querying the runtime environment. Once they
have been trained, the elemental can be used for classification as well as regression. From runtime session
to session, the trained models can be saved as part of the properties.

In order to be usable, this elemental requieres various values to be provided in its properties. The following
table contains them:

115



query the predicate (in the form of a functor) to be used to
query for statements to be used as training data.

generalize a list of lists describing which of the statements terms

will be considered an input or an output.
formatting a list describing how each of the terms in a statement

is to be understood (data or label).
hidden layers a number providing the number of hidden layers to be

used by the neural networks.
neurons in hidden layers a number providing the number of neurons in each

hidden layers.
datafile a string providing a path to a binary file in which to save (or load)

the network once trained.

By providing a functor instead of just a symbol for the terms in the generalize and formatting lists, list and
data terms can be injested by the elemental. For example, if we are expecting 10 inputs to be provided in a list
or a data, we would specify this as i(10). For concrete example, check any of samples in ./etc/samples/ml.

To dive in the details, have a look at the file iris.fizz in the samples folder. As the name indicates, this
samples uses the famous Iris dataset (which you can find in https://archive.ics.uci.edu/ml/datasets/iris)
which, have been processed into a fizz Knowledge. Let’s look at how we have set up the elemental:

1 iris { class = FZZCFFBNetwork,

2 alias = iris.ffbn,

3 query = iris(_,_,_,_,_),

4 generalize = [[i,i,i,i,o],[o,i,i,i,i]],

5 formatting = [d,d,d,d,l],

6 hidden_layers = 1,

7 neurons_in_hidden_layers = 4,

8 } {

9
10 }

In the example we request the elemental object to create two neural networks (with the generalize label/-
value). Both will have four inputs and a single output neurons, however which of the terms is an output is
the difference. For the first network, we specified [i,i,i,i,o] which means the last term will be the output.
For the second network, we have [o,i,i,i,i] where the first term will be the output. The formatting

label indicates that the first four terms are data while the last term is a label.

Unless the elemental is already trained, you will need to use the /tells console command to instruct the
object to collect training data as well as use them to train the networks. Here’s an example of this:

?- /tells(iris.ffbn,acquires)

?- /tells(iris.ffbn,practice(1.0,1500,0.1))

iris - practice completed (0.000138,0.000000)

iris - practice completed (0.000398,0.000000)

Sending the symbol acquires to the elemental will set it into a training data acquisition state in which the
query you provided in the properties (or by using the /poke command) will be used to collect statements.
Depending on how much data can be collected (there’s no console feedback) you can wait a little bit before
entering the second /tells command which instructs the elemental to train (practice) using the statements

it has received so far. The parameters provided in the functor are (in order): split between training and
validation data (a number between 0 and 1), the count of epochs to train the models for and the learning
rate. In this case, we are requesting all received statements to be used as training data, the epoch to be 1500

116



and the learning rate to be 0.1.

The output on the console for the second /tells command will indicate when the training is completed for
each networks. The numbers in the parantheses are the training error and validation error. In this case,
since we have no validation data, the validation error is 0.

Once the networks are trained, the models can be used. For example, we can classify:

?- #iris(4.40,2.90,1.40,0.20,:x)

-> ( setosa ) := 0.98 (0.001) 1

Note the truth value for the iris statement that was returned by the elemental (0.98). We can also do a
regression to find out a value for the first term:

?- #iris(:x,2.90,1.40,0.20,setosa)

-> ( 4.838565 ) := 0.99 (0.001) 1

Note that having more than one unbound variable in your query isn’t supported. When the elemental is
saved, the models will be saved in the properties as a binary term under the label data.

EV3

The modEV3 module provides access to the LEGO Mindstorms EV37 sensors and motors when running fizz

on the EV3 Intelligent brick (it-self running the Linux distribution ev3dev8).

All of the elementals provided by the module follows the same patterns when it comes to interacting with
them. That is using specific queries to read (peek) values, write (poke) values and execute specific functions
(call) or cancel running functions (halt).

More information on each sensor and motor can be found within the ev3dev documentation9.

EV3CSYSLEGOSystem

Along with providing a way to read the device’s battery status, the elemental watches over plugging and
unplugging of sensors or motors. It also provides some core functionalities for the other elementals in the
modules, and as such its presence in the substrate is mandatory.

The elemental has the following single property:

bat.technology because the EV3 cannot tell what type of the battery
powering it, this property provides that information so that
the estimation of the battery status can be more accurate.
Accepted values are: liion and nimh.

Several values can be read from the elemental using a peek predicate:

bat.current battery current in microamps.
bat.voltage.min nominal battery voltage when empty (the value depends on the technology).
bat.voltage.max nominal battery voltage when full (the value depends on the technology).
bat.voltage battery voltage in microvolts.
bat.voltage.p naive estimation of the battery percentage based on the voltage.

7https://www.lego.com/en-us/mindstorms/products/mindstorms-ev3-31313
8https://www.ev3dev.org/
9http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/index.html

117



For example, if the elemental is labeled ev3.sys, we would query any of the above values as follow:

?- #ev3.sys(peek,bat.current(:c))

-> ( 188000 ) := 1.00 (0.069) 1

Multiple values can be peeked at in the same query by using a list of functor as the second argument. For
example:

?- #ev3.sys(peek,[bat.voltage(:v),bat.voltage.p(:p)])

-> ( 7421066 , 0.595722 ) := 1.00 (0.098) 1

When sensors or motors are plugged or unplugged from the device ports, the elemental will publish statements

that provide information on such events. For instance:

ev3.sys(enum, removed, sensor, 2)

ev3.sys(enum, plugged, sensor, 3)

The first one indicate that the sensor identified by the id 2 was removed, and the second one indicates that
a sensor was plugged with the id 3. If the event relate to a motor, the third term of the statement will be
the symbol motor.

EV3CSYSLEGOLed

The EV3CSYSLEGOLed provides a way to control one of the LED available on the EV3 Intelligent brick. Each
of two LEDs is actually composed of two LEDS, one red and one green. When they are both set to the same
value, the LED will be orange.

The elemental has the following single property:

index indicate which of the LED the elemental should access. The value
can be 0 for the left LED or 1 for the right one.

The color of the LED can be changed (or queried) using a peek or poke predicate:

r the brightness of the red LED (from 0 to 1).
g the brightness of the green LED (from 0 to 1).

For example, if the elemental is labeled ev3.sys.led.1, we would change the color of the LED to a not so
bright orange as follow:

?- #ev3.sys.led.1(poke,[r(0.2),g(0.2)])

-> ( ) := 1.00 (0.028) 1

The brightness of the LED can be read as follow:

?- #ev3.sys.led.1(peek,r(:b))

-> ( 0.200000 ) := 1.00 (0.046) 1

118



EV3CACTLEGOMotor

This elemental controls a single LEGO tacho motor. The following properties can be set at load time but
also modified at runtime:

dutycycle the duty cycle setpoint of the motor. Accepted range is -100 to 100.
polarity polarity of the motor; either the symbol normal or inversed.
port the port on which the motor is connected. Accepted symbols are:

portA, portB, portC and portD.
rampdw ramp down setpoint (in ms).
rampup ramp up setpoint (in ms).
speed target speed in tacho counts per second.
stopaction stop action to be applied at the end of a run (or when the stop

command is used). Accepted values are: coast, brake and hold.

Other properties can only be set or get at runtime:

maxspeed the maximum speed value for the motor (peek only) in tacho count per second.
position the current position (on peek) or the target position (on poke) in tacho count.
count the number of tacho count in one rotation of the motor.
state the current state of the motor (peek only), as a list of any of the following

symbols: running, ramping, holding, overloaded, stalled.
running is the motor currently running (peek only) as a boolean value.
holding is the motor currently holding (peek only) as a boolean value.

For example, if the elemental is labeled ev3.act.motor.t, we would read the position as follow:

?- #ev3.act.motor.t(peek,position(:p))

-> ( -44 ) := 1.00 (0.052) 1

When it comes to executing functions, the elementals implements the following:

by runs the motor until its position is offset by a given value.
for runs the motor for a given amount of time (in ms).
go runs the motor until it is stopped.
reset stops the motor and reset the position to 0.
stop stops the motor.
to runs the motor until its position reachs the given value.

When requesting the elemental to execute a specify function, the query will be answered right away, even if
the function has yet to be completed. For example:

?- #ev3.act.motor.t(call,by(-45))

-> ( ) := 1.00 (0.037) 1

Unlike some of the other elementals in the module, the motor one doesn’t provide a way to monitor the
progress of a function. The way to do so, will be to frequently peek at the position and/or state of the
motor.

EV3CSENLEGOColor

This elemental provides access to a LEGO color sensor, which can be use to sense the reflected or ambient
light. The following properties can be set at load time but also modified at runtime:

port the port on which the sensor is connected. Accepted symbols are:
port1, port2, port3 and port4.

mode the mode of operation of the sensor: reflected, ambient, index or value

119



Depending on the mode in which the sensor is set, the reading (via the value property) from the sensor will
be different. The following table details the various supported modes:

ambient ambient light intensity (0 to 1).
reflected reflected light intensity (0 to 1).
index the detected color (any of the symbols: black, blue, green,

yellow, red, white, brown.
value raw color expressed in a list of three numbers (red, green, blue).

For example, if the elemental is labeled ev3.sen.color, we would read the sensor (set in reflected mode) as
follow:

?- #ev3.sen.color(peek,value(:c))

-> ( 0.010000 ) := 1.00 (0.112) 1

EV3CSENLEGOGyros

This elemental provides access to the LEGO gyroscope sensor, which can be use to sense the direction in
which a particular robot is facing. The following properties can be set at load time but also modified at
runtime:

port the port on which the sensor is connected. Accepted symbols are:
port1, port2, port3 and port4.

mode the mode of operation of the sensor (as a symbol).
inverted set to yes if the sensor is mounted inverted.

The supported modes are:

angle1axis the sensor provides the rotation angle along the first axis (in degrees).
rrate1axis the sensor provides the rotational speed along the first axis (in degrees per second).
angle2axis the sensor provides the rotation angle along the second axis (in degrees).
rrate2axis the sensor provides the rotational speed along the first axis (in degrees per second).

Just like the other sensor based elementals, the sensor can be read with a peek query. For example, if the
elemental is labeled ev3.sen.gyros, we can get the current value as follow:

?- #ev3.sen.gyros(peek,value(:h))

-> ( -46 ) := 1.00 (0.092) 1

EV3CSENLEGOPower

The elemental EV3CSENLEGOPower provides access to the LEGO Energy Display (part of a science kit). The
following properties can be set at load time but also modified at runtime:

port the port on which the sensor is connected.
Accepted symbols are: port1, port2, port3 and port4.

At runtime, the reading from the sensor can be retreive using a peek query. The value is a list which
contains three terms. The first two are lists holding the readings (voltage in mili-volts, current in mili-amps
and power in mili-watt) respectivelu for the input and output ports. The last term in the list is the energy
stored by the device (in Joules).

For example, assuming an elemental labeled ev3.sen.power:

?- #ev3.sen.power(peek,value(:r))

-> ( [[7.969000, 188, 1485], [9.840000, 0, 0], 48] ) := 1.00 (0.093) 1

120



EV3CSENLEGOSonic

This elemental provides access to the LEGO Ultrasonic Sensor, which gives an estimation of the distance
between the sensor and a possible object. The following properties can be set at load time but also modified
at runtime:

port the port on which the sensor is connected.
Accepted symbols are: port1, port2, port3 and port4.

mode the mode of operation of the sensor (as a symbole.)

The supported modes are:

continuous continuous measurement.
occasional Single measurement.
listening Listen (for another Ultrasonic sensor)

Independently the mode in which the sensor is set (except listening), the reading (via the value property)
from the sensor will always be expressed in meters, within the range 0.0 to 2.55. Note that 2.54 is the
maximum range of the sensor. When the sensor is in listening mode, the value will be either 0 or 1. The
later meaning another device was heard.

Assuming an elemental labeled ev3.sen.sonic, we would fetch the latest value from it as follow:

?- #ev3.sen.sonic(peek,value(:r))

-> ( 1.227000 ) := 1.00 (0.079) 1

EV3CSENLEGOTouch

This elemental provides support for the LEGO Touch Sensor which can be used to detect contact will objects
or act as a button that can be pressed by somebody. The following properties can be set at load time but
also modified at runtime:

port the port on which the sensor is connected. Accepted symbols are:
port1, port2, port3 and port4.

At runtime, the state of the button can be checked by using a peek query on pressed as follow:

?- #ev3.sen.touch(peek,pressed(:r))

-> ( 0 ) := 1.00 (0.172) 1

?- #ev3.sen.touch(peek,pressed(:r))

-> ( 1 ) := 1.00 (0.098) 1

When the button is currently not pressed, the value will be 0. And it will be 1 when pressed. Whenever
the button is pressed or depressed, the elemental will publish a statement indicating the occurence of such
event. The statement will be formatted as follow:

ev3.sen.touch(hint, pressed(1))

ev3.sen.touch(hint, pressed(0))

EV3CBEVDrive

This elemental provides a more advanced functionality that combines multiple motors and sensors to perform
Tank steering driving. The following properties can be set at load time but also modified at runtime:

121



hints control loop frequency (in ms)
ticks how often to publish a hint when driving (modulo on the hints)
gyros label of the gyros sensor elemental

motor.l label of the left motor elemental

motor.r label of the right motor elemental

odometry a frame that describes the odometry characteristics to be used.
That is: wheel.c for the circumference of the wheel (in m),
motor.d for the measured distance in between the center of
the motors (in m)

move a frame that describes the setting to be used when the robot is
actually driving. That is: speed for the speed to be applied to
both motors when at full power level. pid.Kp for the PID’s
proportional constant, pid.Kd for PID’s derivative constant
and pid.Ki for the PID’s integral constant.

turn a frame that describes the setting to be used when the robot is
turning in place. That is: speed for the speed to be applied to
both motors when at full power level. pid.Kp for the PID’s
proportional constant, pid.Kd for PID’s derivative constant
and pid.Ki for the PID’s integral constant.

A few other properties can only be set or get at runtime:

heading The target heading (in degree) that should be reached.
pwlevel The power level (as a number betweeb -1 to 1) to be applied.
position A list of two numbers giving the position of the robot

as estimated by the odometry (X,Y). If poked, the odometry will be reset
to the given value.

To get the robot to drive or turn, the elemental implements the following functions:

move when this function executes, the elemental will attempt to drive
in the direction given by the heading. Note that it will not re-orient
itself in-place before driving forward. Use the turn.to function

first if that is needed.
turn.by when this function executes, the elemental will orient the robot

to face the current heading offsets by a value given as argument to the
function.

turn.to when this function executes, the elemental will orient the robot
to face a specific heading, given as argument to the function.

While any of the above functions are in progress, the elemental will publish hint statements. For example,
with the move function, the second term of the statement will be a functor with an arity of three:

?- #ev3.bev.drive(poke,pwlevel(0.5)), #ev3.bev.drive(call,move)

spy : Q #ev3.bev.drive(poke, pwlevel(0.500000)) (14.994122)

spy : R ev3.bev.drive(poke, pwlevel(0.500000)) (14.975505)

spy : Q #ev3.bev.drive(call, move) (14.924033)

spy : R ev3.bev.drive(call, move) (14.915030)

-> ( ) := 1.00 (0.149) 1

spy : S ev3.bev.drive(hint, move(-7, [0.017187, -0.002415], 7)) (15.000000)

spy : S ev3.bev.drive(hint, move(-6, [0.049698, -0.006407], 6)) (15.000000)

spy : S ev3.bev.drive(hint, move(-5, [0.084466, -0.010019], 5)) (15.000000)

spy : S ev3.bev.drive(hint, move(-2, [0.136583, -0.014501], 2)) (15.000000)

spy : S ev3.bev.drive(hint, move(-1, [0.151241, -0.014996], 1)) (15.000000)

spy : S ev3.bev.drive(hint, move(1, [0.211121, -0.016041], -1)) (15.000000)

spy : S ev3.bev.drive(hint, move(1, [0.214054, -0.015990], -1)) (15.000000)

spy : S ev3.bev.drive(hint, move(3, [0.263421, -0.015043], -3)) (15.000000)

spy : S ev3.bev.drive(hint, move(4, [0.300769, -0.013077], -4)) (15.000000)

122



The first term is the current heading (read from the gyroscope), the second term is the current position (as
estimated by the odometry) and the last term is the error in heading (in degrees).

Once started, the functions will keep on running until they are implicitely terminated by commanding the
elemental with the single term halt. For example:

?- #ev3.bev.drive(halt)

-> ( ) := 1.00 (2.255) 1

EV3CBEVSonar

This elemental combines a single motor, a gyroscope and an Ultrasonic sensor as well as the EV3CBEVDrive
elemental to implement a sonar like functionality. The motor is expected to allow for the Ultrasonic sensor to
be rotated around the Y (Up) axis. The elemental implements two functions: scan, which supports reading
the distance to possible obstacles along a set list of heading offsets from the current orientation of the robot;
and skim which supports collecting the distance to possible obstacles between two heading offsets in a more
continuous way.

The following properties can be set at load time but also modified at runtime:

gyros label of the gyros sensor (optional)
sonic label of the ultrasonic sensor
motor label of the motor (that can turn the ultrasonic sensor)
drive label of the drive behavior (optional)
color label of the color sensor (optional)
scan.mtime how often to check if the motor has reached the target position (in ms).
scan.itime how long after a step before reading the sonic sensor (in ms).
scan.speed speed of the motor to be applied in scan mode.
skim.mtime how often to read from the sensor while the motor is turning in skim mode (in ms).
skim.speed speed of the motor to be applied in skim mode.

After each runs of a function, the elemental will publish a hint statement containing the readings that were
collected (as well as a timestamp value). Each reading is given as a list of three terms. For example:

?- #ev3.bev.sonar(call,scan([-90,-45,0,45,90]))

spy : Q #ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (14.994852)

spy : R ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (14.978301)

-> ( ) := 1.00 (0.117) 1

spy : S ev3.bev.sonar(hint, scan(1558410099.485098, [[-147, 0.757000, [0, 0]], [-102, 1.904000, [0,

0]], [-59, 2.550000, [0, 0]], [-15, 2.550000, [0, 0]], [30, 1.002000, [0, 0]]])) (15.000000)

The first term in the list is the heading at which the distance was sample. The second term is the distance
(in meters) and the third is the position of the robot at the time of the sensing. If the color property was
provided, the value from the sensor will be added as the fourth term.

If the minimum or maximum readings are what is most needed. The elemental also support four functions
that are variation on the two main ones: scan.min, scan.max and skim.min, skim.max. Their hint state-

ments will still contains the list of all readings, but they will also provides the minimum or maximum value
(as the last term in the functor). For example:

?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90]))

spy : Q #ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.991117)

123



spy : R ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.951246)

-> ( ) := 1.00 (0.166) 1

spy : S ev3.bev.sonar(hint, scan.max(1558410277.380321, [[-147, 2.550000, [0, 0]], [-102, 1.906000,

[0, 0]], [-59, 2.550000, [0, 0]], [-14, 2.550000, [0, 0]], [30, 1.006000, [0, 0]]], [-147,

2.550000, [0, 0]])) (15.000000)

Unlike with the drive elemental, these functions will not continuously run. If cyclic execution of any of the
functions is needed, it can be requested from the elemental by providing a time interval as the last term in
the call query. For example:

?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90],1500))

spy : Q #ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90], 1500)) (14.991325)

spy : R ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90], 1500)) (14.977512)

-> ( ) := 1.00 (0.146) 1

spy : S ev3.bev.sonar(hint, scan.max(1558410741.919013, [[-146, 1.301000, [0, 0]], [-102, 1.906000,

[0, 0]], [-59, 2.550000, [0, 0]], [-14, 2.550000, [0, 0]], [30, 1.007000, [0, 0]]], [-59,

2.550000, [0, 0]])) (15.000000)

spy : S ev3.bev.sonar(hint, scan.max(1558410746.059581, [[-147, 1.305000, [0, 0]], [-102, 1.913000,

[0, 0]], [-59, 2.550000, [0, 0]], [-14, 2.550000, [0, 0]], [30, 1.006000, [0, 0]]], [-59,

2.550000, [0, 0]])) (15.000000)

spy : S ev3.bev.sonar(hint, scan.max(1558410749.724064, [[-147, 1.305000, [0, 0]], [-102, 1.904000,

[0, 0]], [-59, 2.550000, [0, 0]], [-14, 2.550000, [0, 0]], [30, 1.006000, [0, 0]]], [-59,

2.550000, [0, 0]])) (15.000000)

spy : S ev3.bev.sonar(hint, scan.max(1558410753.130281, [[-147, 1.302000, [0, 0]], [-103, 1.913000,

[0, 0]], [-58, 2.550000, [0, 0]], [-13, 2.550000, [0, 0]], [30, 1.007000, [0, 0]]], [-58,

2.550000, [0, 0]])) (15.000000)

To get the current reading from the sonar, you can peek at the value of it like this:

?- #ev3.bev.sonar(peek,value(:v))

-> ( [30, 0.471000, [0, 0], 0.010000] ) := 1.00 (0.172) 1

EV3CSRVMapping

This elemental supports building a localization map using a range finder sensor and using that map to com-
pute a path between obstacles. When used with the Ultrasonic sensor, the ability to localize the robot is
unusable due to the large field-of-view of the sensor. Note that this elemental is only available on the x64

build of the module.

The following properties can be set at load time to setup the mapping:

resolution size of a voxel (in m)
width width of the map (in m)
height height of the map (in m)
range effective range of the sensor (in m)
decay how long an obstacle stays in the map (in s)
decay.tick how often to apply decay to the map (in ms), default is 0

and the following properties can be used to setup the path finding settings:

iweight inflation weight during path finding (the bigger the number the longer the algorithm will take ...)
inflate default inflation range (a list of two numbers) around every occupied voxel (in m) of the map
dscales distance scale(s) used by the distance function (a list of two numbers)
dfunct distance function to be used: Euclidean, Manhattan or Diagonal
direct set to yes to use direct path whenever possible

124



The elemental implements a collection of functions which can be called (via a predicate) to update the map
or compute a path:

(update,:p,:h,:a,:d) takes a scan composed of relative angles (d), distances (a) from a sensor along
with the position (p) and heading (h) of the sensor and update the map.

(localize,{},:p,:h,:a,:d,:P,:H,:S) takes a scan composed of relative angles (d), distances (a) from a sensor along
with the position (p) and heading (h) of the sensor and attempt the compute the
actual pose of the sensor (position (P), heading (H)) and score (S).

(reset) reset the map.
(load,string) load a previously saved map from a PPM file.
(save,string) save the current map into a PPM file.
(plan,:s,:t,:l) compute a path in between two points (s to t) and unifies the list of points with

the last term (l).
(near,:p,:d,:P) find a point on the map (P) which is not occupied and within a given distance (d)

of the provided point (p)
(cast,:s,:t,:d,:l) raycast a circle of a given radius (d)from a point (s) to another (t)

and return any contact in a list unified with the last term (l).

8 Advanced topics

Miscellaneous

Escaper

An Escaper is a special kind of term which utility comes to light, mainly, when used with volatiles. It provides
a way to protect a term from an upcoming substitution. As example, let’s look at using the define primitive

to create a prototype which will provide a function similar to the assert primitive but with the difference
that we will stamp the created statements. If we were to create that in a text editor we would do something
like this:

1 assert.stamp {

2
3 (:f, :v) :- assert(:f, :v, {stamp = %now});

4
5 }

To create it from the console, we would type this:

?- define(assert.stamp,[\:f,\:v],[],[[[primitive],assert(\:f,\:v,{stamp = \%now})]])

-> ( ) := 1.00 (0.000) 1

In it, we have use \ to indicate each of the terms which need to be escaped. This will prevent the volatile

now from being substituted when the define primitive is called. For convenience, we have also escaped the
variables :f and :t. This will prevent the console from expecting the call to define to bound the variables.
Once escaped a term will stay that way until it is unescaped using the primitive nab. The primitive define

which we are using in this example will un-escape all terms.

We can now test the new assert.stamp prototype and verify that each of the statements is created with a
timestamp in its properties:

?- #assert.stamp(hello(bob),1)

-> ( ) := 1.00 (0.001) 1

?- #assert.stamp(hello(alice),1)

125



-> ( ) := 1.00 (0.001) 1

?- #hello(:x) {stamp = :s}

-> ( bob , 1509431500.377723 ) := 1.00 (0.001) 1

-> ( alice , 1509431507.226000 ) := 1.00 (0.001) 2

Have we not escaped the now volatile, it will have been substitued during the define call and each of the
statements we would have created will have had the same value for timestamp:

?- define(assert.stamp,[\:f,\:v],[],[[[primitive],assert(\:f,\:v,{stamp = %now})]])

-> ( ) := 1.00 (0.000) 1

?- #assert.stamp(hello(bob),1)

-> ( ) := 1.00 (0.001) 1

?- #assert.stamp(hello(alice),1)

-> ( ) := 1.00 (0.001) 1

?- #hello(:x) {stamp = :s}

-> ( bob , 1509433383.169334 ) := 1.00 (0.001) 1

-> ( alice , 1509433383.169334 ) := 1.00 (0.001) 2

Lastly, the runtime environment defines a primitive called is.escaper which can be used to test if a term

is an escaper or not. To force such term to surrender the term it is protecting, you can use the primitive nab

to bind the escaped term to a variable.

Services

This section provides some details on all the services supported by the runtime.

MRKCCollector

The MRKCCollector service provides a way to assemble all the statements generated by a predicate and
provide them as lists. It can be used by use of the fzz.collect predicate:

fzz.collect(list,functor,list|variable,frame?)

The first term is a list which can contains symbol and/or a range. Its purpose is to indicate if the predicate

to collect is negated (negate symbol) and/or a primitive (primitive symbol). When a range is expressed in
the list, it will be used as the predicate truth value range. The second term is a functor which express the
predicate to be collected. Each of the unbound variables that will be used in the functor will be considered
as a target for collection. The third term will unify or substitue with a list containing the truth value of all
received statements. If provided, the fourth term is a frame which can specify a timeout value (in seconds)
after which the collection will be terminated (with the label tmo) if no more statements are being collected.
When no timeout is provided, the default is half a second. The service will only returns what was collected
once the timeout occurs.

As an example, let’s consider the following knowledges:

1 product {

2
3 (model_e,tesla,2012);

4 (iphone_x,apple,2018);

5 (vive,htc,2015);

6 (coconut_water,zico,2000);

7
8 }

9
10 product {

126



11
12 (iphone,apple,2007);

13 (iphone_3GS,apple,2009);

14 (7710,nokia,2005) := 0.9;

15
16 }

If we wanted to get the name and year of release of all products with a truth value above 0.9, we would
query:

1 ?- #product(:label,_,:years) <0.91|1>

2 -> ( model_e , 2012 ) := 1.00 (0.001) 1

3 -> ( iphone_x , 2018 ) := 1.00 (0.001) 2

4 -> ( vive , 2015 ) := 1.00 (0.001) 3

5 -> ( coconut_water , 2000 ) := 1.00 (0.001) 4

6 -> ( iphone , 2007 ) := 1.00 (0.001) 5

7 -> ( iphone_3GS , 2009 ) := 1.00 (0.001) 6

Now, to generate lists from the statements of all the possible values of the variables, we would kick the
predicate to the service and chain the call like any other predicate dealing with knowledge:

1 ?- #fzz.collect([<0.91|1>],product(:values,_,:years),_), lst.length(:values,:length)

2 -> ( [iphone, iphone_3GS, model_e, iphone_x, vive, coconut_water] ,

3 [2007, 2009, 2012, 2018, 2015, 2000] , 6 ) := 1.00 (0.488) 1

MRKCEvently

The MRKCEvently service provides a way to synchronize two (or more) inference execution by providing a
mean to wait for an event or signal an event. It can be used by using a fzz.evently predicate:

fzz.evently(await,atom,variable|term,frame?)

fzz.evently(flash,atom,term)

When the first term is the symbol await, the predicate will wait for an event identified by the second term

and unify the event’s value with the third term. By providing a frame as the fourth term, the wait can be
setup with a timeout value (tmo, expressed in seconds) an/or requested to support awaiting for more than
one flashing of the event (set multi to yes).

When the first term is flash, the predicate will signal any other inference waiting and provide them with
the value provided as the third term.

For a concrete example, check the sample file etc/samples/db/tools.fizz.

MRKCEvaluator

The MRKCEvaluator service provides a way to evaluate a functor like if it was a predicate. It can be used by
using a fzz.eval predicate:

fzz.eval(list,functor|list,frame?)

The first term is a list which can contains symbol and/or a range. Its purpose is to indicate if the predicate

to collect is negated (negate symbol) and/or a primitive (primitive symbol). When a range is expressed
in the list, it will be used as the predicate truth value range. The second term is a functor or a list which

127



express the predicate to be evaluated. If provided, the third term is a frame which can specify a timeout
value (in seconds) after which the evaluation will be terminated (with the label tmo). When no timeout is
provided, the default will be the substrate’s (or the elemental’s) Time-to-live value (ttl).

If we look at the previous example, we could have used it as follow:

1 ?- #fzz.eval([],product(:name,apple,_),{tmo=2})

2 -> ( iphone_x ) := 1.00 (2.029) 1

3 -> ( iphone ) := 1.00 (2.029) 2

4 -> ( iphone_3GS ) := 1.00 (2.029) 3

This service can get more interesting when combined with the use of fun.make (see Section 5.6 on page 62)
to create the functor to be evaluated:

1 ?- fun.make(product,[:name,apple,_],:func), #fzz.eval([],:func)

2 -> ( iphone , product(iphone, apple, 2007) ) := 1.00 (0.733) 1

3 -> ( iphone_3GS , product(iphone_3GS, apple, 2009) ) := 1.00 (0.733) 2

4 -> ( iphone_x , product(iphone_x, apple, 2018) ) := 1.00 (0.733) 3

128



Release notes

0.7.0-X

Breaking Changes

• predicates:

– range check or unification to a variable of a predicate’s truth value requieres an = character

• terms:

– regexp is no longer an atom

– escaper behavior have changed

Changes

• elementals:

– FZZCFFBNetwork:

∗ new datafile property to save network to a binary file

∗ support for list and data terms

– MRKCBFSolver:

∗ new property reply.on and cascade, cascade.tmo

– FZZCCollector

∗ speed-up

∗ modified behavior of property tmo to be the time-out from the last received replies

∗ added property ttl to specify the time-to-live value for the query

– MRKCCSVStore

∗ property arity to specify the arity of the statements (if the number of columns is greater than the
arity, the extra will be grouped into a list as the last term)

– EV3CSENLEGOGyros

∗ property inverted

– EV3CBEVSonar

∗ support to peek at the current reading

• primitives:

– lst.sort now accept as 3rd term a list of indexes to be used for sorting lists (+1 index will be used when
the lists’ terms are equal)

– revisited the way the sim primitive compute the similarity between two numbers

• samples:

– updated irl2asm.fizz

• terms:

– a frame’s label can be any atom (and not just a symbol)

• console:

– /spy output contains the timestamp

– use verbose property to silence output

– ignore variables with name starting with an upper case

129



Additions

• samples:

– iris2, iris3

– nlu

– movies

– ml

– db

– fuzzy

– fun, eval, exec, sexp, lstrnd

– funx, funx2, funx3

– tasc (based on Hector Levesque’s book ”Thinking as Computation” (ISBN: 978-0-262-01699-5))

• console:

– /trace (see section 4.4 on page 35)

• elementals:

– MRKCStopper (see section 6 on page 103)

– FZZCFUNRunner (see section 6 on page 103)

– EV3CSRVMapping (see section 7 on page 124)

• predicates:

– ? prefix for predicate (see section 2.3 on page 4)

• terms:

– data (see section 3.3 on page 12)

– quirk (see section 3.11 on page 18)

• volatiles ((see section 3.10 on page 18):

– sym.8

– sym.6

– now.ms

• constraints:

– fun.label

• constants:

– pi

• prototypes

– support for alternate fuzzy and-or evaluation (see section 2.4 on page 7)

• primitives:

– rnd.sint (see section 5.12 on page 81)

– qrk.head (see section 5.11 on page 79)

– qrk.tail (see section 5.11 on page 80)

– qrk.make (see section 5.11 on page 79)

– is.quirk (see section 5.17 on page 95)

– lst.any (see section 5.7 on page 64)

– lst.all (see section 5.7 on page 63)

– qat.euler (see section 5.18 on page 97)

130



– qat.apply (see section 5.18 on page 97)

– vec.lenght (see section 5.18 on page 99)

– vec.dist (see section 5.18 on page 99)

– vec.angle (see section 5.18 on page 98)

– vec.angle.signed (see section 5.18 on page 99)

– vec.norm (see section 5.18 on page 100)

– mat.make (see section 5.18 on page 97)

– mat.apply (see section 5.18 on page 96)

– min (see section 5.1 on page 39)

– max (see section 5.1 on page 39)

– cache (see section 5.2 on page 42)

– rng.not (see section 5.13 on page 83)

– rng.real (see section 5.13 on page 85)

– frm.swap (see section 5.5 on page 62)

– pull (see section 5.2 on page 50)

– push (see section 5.2 on page 50)

– drop (see section 5.2 on page 47)

– lst.split (see section 5.7 on page 71)

– lst.knit (see section 5.7 on page 67)

– mao.sin (see section 5.9 on page 77)

– mao.cos (see section 5.9 on page 74)

– mao.atan2 (see section 5.9 on page 73)

– mao.d2r (see section 5.9 on page 74)

– spawn (see section 5.2 on page 52)

– cease (see section 5.2 on page 43)

– shoot (see section 5.2 on page 52)

– is.data (see section 5.17 on page 93)

– prune (see section 5.2 on page 50)

– daa.make (see section 5.4 on page 57)

– daa.length (see section 5.4 on page 57)

– daa.member (see section 5.4 on page 58)

– daa.format (see section 5.4 on page 57)

– daa.item (see section 5.4 on page 57)

– fzz.labels (see section 5.10 on page 77)

– is.primitive (see section 5.17 on page 95)

– exec (see section 5.2 on page 47)

– var.capture (see section 5.10 on page 79)

– var.release (see section 5.10 on page 79)

– var.collect (see section 5.10 on page 79)

– cpy (see section 5.2 on page 45)

– uny (see section 5.2 on page 54)

– nab (see section 5.2 on page 48)

– lst.combi (see section 5.7 on page 64)

– hush.if (see section 5.2 on page 48)

131



– hush.if.not (see section 5.2 on page 48)

– cut.if (see section 5.2 on page 45)

– cut.if.not (see section 5.2 on page 45)

– lst.min (see section 5.7 on page 69)

– lst.max (see section 5.7 on page 68)

– lst.avg (see section 5.7 on page 64)

– vec.add (see section 5.18 on page 98)

– vec.sub (see section 5.18 on page 100)

– vec.mul (see section 5.18 on page 100)

– vec.div (see section 5.18 on page 99)

– rng.norm (see section 5.13 on page 83)

– daa.find (see section 5.4 on page 56)

– daa.min (see section 5.4 on page 58)

– daa.max (see section 5.4 on page 58)

– daa.avg (see section 5.4 on page 56)

– qat.add (see section 5.18 on page 97)

– qat.sub (see section 5.18 on page 98)

– qat.length (see section 5.18 on page 98)

– lst.it (see section 5.7 on page 66)

– any (see section 5.2 on page 41)

Bug Fixes

• issue with variables in the define primitive

• issue with fun.terms not unifying to a split-list (as 2nd term)

• issue with property clone not finding the elemental to clone from

• issue with rnd.sint and rnd.uint crashing with "Floating point exception (core dumped)" when the range
was given using the same value

• issue with then primitive confusing minutes and seconds

• issue with mao.abs primitive returning 0 when the first term was a negative floating point value

• issue with frm.make primitive failing when an empty list was used as one of the term

• issue in FZZCCLUGateway leading to long delay in further transmission after a large one

132



0.6.0-X

Breaking Changes

• MRKCSBFStore elemental class is impacted by a bug in storing GUID term.

• Many of the non-core elementals have been moved to individual modules (see 7 on page 110).

Changes

• primitives:

– str.tokenize support optional fourth term which is a list of flags.

– peek accepts a third term which is a value to be unified to the 2nd term if the label doesn’t exists in the
properties.

• config:

– spinning meaning changed (see 4.2 on page 20)

• elementals:

– new ttl property to set the time-to-live of any query sent by the elemental (instead of using the system
default)

– MRKCEvaluator: when no ”tmo” is specified, the substrate or elemental TTL value is used

• predicates:

– ~ can be used with any label other than self (see section 2.3 on page 4).

Additions

• samples:

– bigrams

– clu

– ecalculus

– robin

• modules:

– CLU (see section 7 on page 114)

– EV3 (see section 7 on page 117)

• elementals:

– constants $self and $guid

• primitives:

– rnd.sint (see section 5.12 on page 81)

• predicates:

– * prefix for predicate (see section 2.3 on page 4)

Bug Fixes

• guid term wasn’t flattened and thus wouldn’t get saved in SBFStore.

• trigger based prototypes where not respecting the ’cut’ directives.

• Unfrequent crashes when pasting into the console (outside of the input mode)

133



0.5.0-X

Breaking Changes

• Pre 0.5 kindled runtime (.bizz) files can’t be loaded

• MRKCSBFStore elemental class is impacted by hashing changes to numbers

Changes

• support for modules (shared library) that can be loaded at runtime (SDK to come in a future release)

• console:

– previous query is no longer cancelled when a new one is issued

– query specified via the command line gets executed once all the files specified in the command line have
been loaded

• new elemental properties:

– chatty (see section 2.5 on page 8)

– noisy (see section 2.5 on page 8)

– clone (see section 2.5 on page 8)

• any elemental property can be read using the constant syntax

• new property for elemental of class MRKCBSSolver:

– memoize (see. fibonacci sample)

• new property for elemental of class MRKCLettered:

– recall.frq, recall.ttl, recall.add, recall.mul, recall.thd (see section 6 on page 110)

• primitives gt, gte, lt and lte now also works with strings and symbols

Additions

• solution files (see section 4.3 on page 23)

• new console command: /use (see section 4.4 on page 36)

• new syntax:

– ~ prefix for predicate (see section 2.3 on page 4)

– self predicate (see section 2.3 on page 4)

• new terms:

– regexp (see section ?? on page ??)

• new primitives:

– frm.erase (see section 5.5 on page 59)

– lst.mix (see section 5.7 on page 69)

– lst.sort (see section 5.7 on page 70)

– lst.sub (see section 5.7 on page 71)

– rex.make (see section 5.14 on page 85)

– rex.match (see section 5.14 on page 86)

– rng.rand (see section 5.13 on page 84)

• new constraints:

– eq

– is.regexp

– is.bound

• new volatiles: sym.3, sym.4 and sym.10 (see section 3.10 on page 18)

134



Bug Fixes

• lst.item, lst.head, lst.tail would not unify theirs last term with a list.

• MRKCTicker wouldn’t accept a property as a constant.

• peek(guid,:x) was unifying :x with a string instead of a guid.

• frm.fetch(a = [1,2],a,[ ,:v]) wasn’t returning 2.

• re-saving an elemental into a fizz file was failing.

• terms in a range couldn’t be a constant.

• the hashcode of real number was the same regardless of the sign.

• lst.tail was not unifying its second term with [] when the first term was an empty list.

135



0.4.0-X

Additions

• new elementals:

– MRKCSBFStore (see section 6 on page 102)

– MRKCCSVStore (see section 6 on page 101)

– FZZCLGRProcessor (see section 7 on page 110)

• new terms:

– guid (see section 3.1.5 on page 11)

• new primitives:

– str.trim.head (see section 5.16 on page 92)

– str.trim.tail (see section 5.16 on page 92)

– str.tail (see section 5.16 on page 89)

– str.head (see section 5.16 on page 88)

– lst.incl (see section 5.7 on page 66)

– lst.excl (see section 5.7 on page 65)

– lst.join (see section 5.7 on page 67)

– lst.init (see section 5.7 on page 66)

– sym.cmp (see section 5.15 on page 86)

– sim (see section 5.1 on page 40)

– is.even (see section 5.17 on page 93)

– is.odd (see section 5.17 on page 94)

– gid.make (see section 5.10 on page 78)

• new constraints:

– lst.incl

– lst.excl

– is.guid

– is.even

– is.odd

Changes

• modified primitives:

– lst.remove was changed to succeed when the item to remove isn’t found in the list.

– str.trim was changed to accept an optional third term: the string to be trimmed from the 1st term.

– lst.length was changed to accept a third term which is the term to be assigned to each of the list’s

terms when the first term of the primitive is an unbound variable.

– fzz.lst was changed to returns a list of guid terms instead of a list of strings.

– guid.str and guid.sym were renamed gid.str and gid.sym.

• modified console commands:

– /peek now accepts a guid.

– /poke now accepts a guid.

– /tells now accepts a guid as well as a symbol.

– /knows now accepts a guid.

• modified terms:

– binary syntax has changed to single quote functor.

– symbol can now include + or * as long as they are not on the first character.

136



Bug Fixes

• constraint is.string was testing for a variable to be bound to a symbol

• primitive str.swap in some condition was repeating part of the tail of the string where the replacement was
occuring

• primitive add was returning 0 when used with an unsigned number as the first term and a negative number as
the second term (e.g. add(23u,-18,:v))

• string terms with control characters were not rendered properly when they are embedded in other terms

137



0.3.0-X

Additions

• live code reload functionality

• new constant $cores

• new primitives:

– aeq (see section 5.3 on page 54)

– bundle (see section 5.2 on page 42)

– div.int (see section 5.1 on page 38)

– fzz.lst (see section 5.10 on page 78)

– lst.remove (see section 5.7 on page 69)

– mao.sign (see section 5.9 on page 77)

– str.find (see section 5.16 on page 87)

– str.flip (see section 5.16 on page 88)

– str.trim (see section 5.16 on page 91)

– str.rest (see section 5.16 on page 89)

– str.swap (see section 5.16 on page 89)

– sym.cat (see section 5.15 on page 86)

• new console commands:

– /reload (see section 4.4 on page 33)

– /import.txt (see section 4.4 on page 31)

• new class FZZCWebAPIGetter (see section 7 on page 112)

Changes

• increased the maximum number of threads that can be used by the console

• added support for str.find as a variable’s constraint

• primitive frm.fetch allows for a fourth term to specify a default value to use if the label isn’t found

• when the first term of the /peek and /poke console commands is a symbol, all elemental of that label will be
targetted

• the fzz.eval service now accept a list as second term to describe the functor to be evaluated

• changed class FZZCTicker to support the property tick.on.attach

• changed class MRKCBFSolver to support the property replies.are.triggers

• changed class MRKCLettered to support the property nearest.only

Bug Fixes

• minor performance tweaks when parsing list in fizz source files

• primitive str.sub was not properly handling negative offset

• on occasion queries/replies where not being sent/received

• JSON support wasn’t handling ’null’ value (causing crash)

• chunked transfer encoding wasn’t supported by the builtin web client

138



0.2.0-X

Additions

• added console commands /import.json and /export.json to import and export JSON files (see section 4.4
on page 29 and 4.4 on page 26)

• added primitive change (see section 5.2 on page 44)

• added primitive console.exec (see section 5.2 on page 44)

• added primitive then (see section 5.2 on page 53)

• added primitive tme.str (see section 5.2 on page 53)

• added primitive str.cmp (see section 5.16 on page 87)

• added elemental class FZZCWebAPIPuller for fetching JSON data from web services (see section 7 on page 113)

Changes

• console commands /import and /export were renamed /import.csv and /export.csv

• the elemental class FZZCTicker now also supports time interval expressed in seconds (see section 6 on page 109)

Bug Fixes

• published statements could stop from being received by elementals referencing them as trigger

• primitive str.tosym was failing when the first term was already a symbol

0.1.4-X

Changes

Initial Release

Bug Fixes

Initial Release

Known issues

• Poor performance with inferences that involves combinatorial exploration

• Parser’s error handling is too terse

• An empty comment line will cause a parsing error in a fizz file

139



Index

Concepts
Elemental, 8
Knowledge, 2
Predicate, 4
Prototype, 6
Service, 9
Statement, 3

Console
bye, 24
cpus, 24
create, 24
delete, 25
export.csv, 25
export.json, 26
freeze, 28
history.cls, 28
history.len, 28
import.csv, 28
import.json, 29
import.txt, 31
kindle, 31
knows, 31
list, 32
load, 33
peek, 37
poke, 33
reload, 33
save, 34
scan, 34
spy, 34
stats, 35
tells, 35
trace, 35
unload, 36
use, 36
wipe, 37

Elementals
EV3CACTLEGOMotor, 119
EV3CBEVDrive, 121
EV3CBEVSonar, 123
EV3CSENLEGOColor, 119
EV3CSENLEGOGyros, 120
EV3CSENLEGOPower, 120
EV3CSENLEGOSonic, 121
EV3CSENLEGOTouch, 121
EV3CSRVMapping, 124
EV3CSYSLEGOLed, 118
EV3CSYSLEGOSystem, 117
FZZCCLUGateway, 114
FZZCFFBNetwork, 115

FZZCFUNRunner, 103
FZZCLGRProcessor, 110
FZZCRandomizer, 107
FZZCTicker, 109
FZZCWebAPIGetter, 112
FZZCWebAPIPuller, 113
MRKCBFSolver, 101
MRKCCSVStore, 101
MRKCDFSolver, 101
MRKCLettered, 110
MRKCSBFStore, 102
MRKCStopper, 103

Miscellaneous
Escaper, 125

Modules
CLU, 114
EV3, 117
LGR, 110
MLK, 115
WWW, 112

Primitives
Arithmetic
add, 37
div.int, 38
div, 38
inv, 38
max, 39
min, 39
mod, 39
mul, 39
sim, 40
sub, 40
sum, 40

Basic
any, 41
assert, 41
break.not, 42
break, 41
bundle, 42
cache, 42
cease, 43
change, 44
console.exec, 44
console.gets, 45
console.puts, 45
cpy, 45
cut.if.not, 45
cut.if, 45
declare, 46

140



define, 46
drop, 47
exec, 47
false, 47
forget, 47
fuzz, 48
hush.if.not, 48
hush.if, 48
hush, 48
nab, 48
now, 48
peek, 48
poke, 49
prune, 50
pull, 50
push, 50
repeal, 50
revoke, 51
set.if.not, 52
set.if, 51
set, 51
shoot, 52
spawn, 52
then, 53
tme.str, 53
true, 53
uny, 54
whisper, 54

Boolean Logic
boo.and, 72
boo.not, 72
boo.or, 72
boo.xor, 73

Comparaisons
aeq, 54
are.different, 55
are.same, 55
cmp, 55
eq, 55
gte, 55
gt, 55
lte, 56
lt, 56
neq, 56

Frame
frm.cat, 61
frm.empty, 60
frm.erase, 59
frm.fetch, 59
frm.labels, 60
frm.label, 60
frm.length, 59
frm.make, 59
frm.pairs, 61

frm.store, 60
frm.sub, 62
frm.swap, 62
frm.values, 61

Functor
fun.label, 63
fun.length, 62
fun.make, 62
fun.member, 63
fun.terms, 63

List
daa.avg, 56
daa.find, 56
daa.format, 57
daa.item, 57
daa.length, 57
daa.make, 57
daa.max, 58
daa.member, 58
daa.min, 58
lst.all, 63
lst.any, 64
lst.avg, 64
lst.cat, 64
lst.combi, 64
lst.diff, 65
lst.empty, 65
lst.except, 65
lst.excl, 65
lst.flip, 66
lst.head, 66
lst.incl, 66
lst.init, 66
lst.item, 67
lst.it, 66
lst.join, 67
lst.knit, 67
lst.length, 67
lst.make, 68
lst.max, 68
lst.member, 68
lst.min, 69
lst.mix, 69
lst.remove, 69
lst.rest, 69
lst.sort, 70
lst.span, 70
lst.split, 71
lst.sub, 71
lst.swap, 71
lst.tail, 72
mao.atan2, 73
mao.cos, 74
mao.d2r, 74

141



mao.sin, 77
Mathematics
mao.abs, 73
mao.ceil, 73
mao.exp, 74
mao.floor, 75
mao.log10, 75
mao.log, 75
mao.modf, 76
mao.pow, 76
mao.round, 76
mao.sign, 77
mao.sqrt, 77

Miscellaneous
fzz.labels, 77
fzz.lst, 78
gid.make, 78
gid.str, 78
gid.sym, 78
var.capture, 79
var.collect, 79
var.release, 79

Quirk
qrk.head, 79
qrk.make, 79
qrk.tail, 80

Random
rnd.real, 80
rnd.rsnd, 80
rnd.sint, 81
rnd.uint, 81

Range
rng.clamp, 82
rng.inc, 83
rng.inter, 82
rng.max, 82
rng.min, 82
rng.norm, 83
rng.not, 83
rng.rand, 84
rng.real, 85
rng.span, 83
rng.uint, 84
rng.union, 84

Regexp
rex.make, 85
rex.match, 86

String
str.cat, 87
str.cmp, 87
str.find, 87
str.flip, 88
str.head, 88
str.length, 88

str.rest, 89
str.sub, 89
str.swap, 89
str.tail, 89
str.tokenize, 90
str.tolower, 90
str.tonum, 90
str.tosym, 91
str.toupper, 91
str.trim.head, 92
str.trim.tail, 92
str.trim, 91
sym.cat, 86

Symbol
sym.cmp, 86
sym.sub, 87

Typing
is.atom, 92
is.binary, 92
is.data, 93
is.even, 93
is.final, 93
is.frame, 94
is.func, 93
is.list, 94
is.number, 94
is.odd, 94
is.primitive, 95
is.quirk, 95
is.range, 95
is.regexp, 95
is.string, 95
is.symbol, 96
is.variable, 96
mat.apply, 96
mat.make, 97
qat.add, 97
qat.apply, 97
qat.euler, 97
qat.length, 98
qat.sub, 98
vec.add, 98
vec.angle.signed, 99
vec.angle, 98
vec.dist, 99
vec.div, 99
vec.length, 99
vec.mul, 100
vec.norm, 100
vec.sub, 100

Services
MRKCCollector, 126
MRKCEvaluator, 127

142



MRKCEvently, 127

143


