
Building a simple stock market monitor with fizz

Jean-Louis Villecroze

jlv@f1zz.org @CocoaGeek

May 24, 2018

Abstract

In this article1, we will construct a simple (and very minimally intelligent) application which will monitor
the changes happening on a set of stock prices. We will also look at how to integrate some Machine

Learning into the application. The complete solution can be found in the etc/articles/iex folder of
fizz ’s distribution.

What is fizz ?

fizz is an experimental language and runtime environment for the exploration of cognitive architectures and
software solutions combining Machine Learning (ML) and Machine Reasoning (MR). It is based primarily on
symbolic logic programming and fuzzy formal logic, and it features a distributed, concurrent, asynchronous
and responsive inference engine as well as a built-in neural network implementation. If you have dabbled in
the past with PROLOG, then you will feel some familiarities as fizz shares some of its concepts and syntax
with it. It is important, however, to keep in mind that fizz is not PROLOG.

Since it’s tradional to introduce a programming language with the famous hello, world! example, here’s the
fizz version:

1 hello {

2
3 () :- console.puts("Hello, World!");

4
5 }

We will then have to invoke it from the console:

$./fizz.x64 hello.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading hello.fizz ...
load : loaded hello.fizz in 0.001s
load : loading completed in 0.001s
?- #hello
Hello, World!
-> () := 1.00 (0.001) 1

Before continuing further with fizz , we need to define some of the terminology which we will encountering
in this article:

Substrate is the runtime environment provided by fizz .
Knowledge is a collection of related statements and/or prototypes.
Statement is a collection of terms with an assigned truth value (a.k.a. facts).
Predicate is a labeled collection of terms with an assigned truth value range (or variable) that

are used to query the substrate.
Prototype is a chained collection of predicates with an entry-point that can be inferred upon (a.k.a. rules).
Elemental is a runtime object (that lives in the substrate) which hold knowledge and can return answers to queries.
Service is a runtime object (that lives in the substrate) which provide a unique service within the runtime.

One of the core concepts that set fizz aside from tradional PROLOG implementations, is how inference is
done not by a single entity having access to all facts and rules, but by the cooperation of a collection of
object (elementals) each having access only to what they must know (knowledges). Elementals in fizz are

1Thanks to Robert Wasmann (@retrospasm) for providing feedback and reviewing this document.

1

independent actors, which must exchange messages (by using a queries and replies mechanism) in order
to execute any inferences. While this is far from being the most efficient method (and performance does
suffer) it allows for a system to be build to be responsive. A statement that is broadcasted in a substrate
will potentially trigger the execution of any prototype that references it. This strict isolation between ele-
mentals supports inferences to be continued at a later time (within reason) as new data becomes available.
This also supports inferences to be distributed among many cores and (eventually) many participating hosts.

Statements, and predicates are composed of collection of data items which are called terms. In fizz , there is
a total of eight such different types of terms:

Atom is the representation of an atomic piece of data, such as a number, a symbol or a string.
Constant is a special kind of variable which holds a static value.
Frame is a dictionary which stores key-value pairs.
Functor is a named list.
List is a read-only collection of terms.
Range is the expression of a range of numerical values between minimum and maximum values.
Variable is a placeholder for any term.
Volatile is a special kind of variable which holds an ever changing value.

To allow for complex solutions to be built, fizz allows for the class of an elemental to be specified. While in
general, most elementals are just instances of the same underlying base class (in which case there is no need
to specify a class when defining the elemental), often it is necessary to use one of the classes provided by the
runtime. This is something that we will do many times in this article.

For further details on fizz , including small examples of its syntax and capabilities, please refer to the user
manual. Let’s now get on with building this application ...

Fetching data from the web API

The first step we are going to take in building this application is to look at fetching the stock prices from
the web API we have decided to use (IEX Trading2). fizz provides the FZZCWebAPIGetter class of elemen-
tal which performs this operation. Since that elemental only fetches data when queried (unlike the class
MRKCWebAPIPuller), we are going to need to complement it with an FZZCTicker elemental, so that we can
query for the latest stock prices at a regular interval. The advantage of using this elemental is that we can
more easily dynamically change the query used to request data from the web service.

To get started, let’s create a new fizz source file which we will call iex.core.fizz and setup the requiered
knowledge definition for the two elementals we just discussed:

1 iex.tick {

2 class = FZZCTicker,

3 tick = 5,

4 tick.on.attach = yes

5 } {}

6
7 iex.get {

8 class = FZZCWebAPIGetter,

9 url.host = "https://api.iextrading.com",

10 url.path = "/1.0/stock/market/batch"

11 } {}

Whenever the iex.tick elemental ticks, it will fire a statement (every five seconds and at the launch of the
system, as we have specified yes for the property tick.on.attach). As we want to trigger iex.get into
fetching data from the web API we have described (with the url.host and url.path properties), we need
now to introduce a third elemental which when triggered by iex.tick will query iex.get and thus get it
to fetch data from the web API:

2Data provided for free by IEX

2

1 iex.query {

2
3 () :- @iex.tick(_,_),

4 #iex.get({types=quote,symbols=[AAPL],filter=[latestPrice,change,latestUpdate]},[:t,200,_,:c]),

5 console.puts(:t," ",:c),

6 hush;

7
8 }

In it, we defined a single prototype which in line 3 specifies iex.tick as a triggering predicate (we won’t
care about its terms so we used wildcard variables which will unify with anything), and query iex.get for
the AAPL (Apple Inc.) quote data. The first term of a predicate querying an FZZCWebAPIGetter elemental is
always a frame describing the query part of a web API’s request to be performed (and as such, it will always
be specific to the web API you are using). In return, the elemental will answer with a statement where the
second term is unified with a list containing: a timestamp, an HTTP status code, a frame containing the
HTTP response’s headers and finally the frame containing the received content. In line 4, we unify the term
directly to a list so that we can rely on the unification process to extract the terms we care about and also
insure that the predicate will only be satisfied if the HTTP status code is 200. For now, we will just output
the received data to the console (with the primitive console.puts) and since it doesn’t make sense for this
elemental to publish the statements it generates by successfuly evaluating the prototype, we call the hush

primitive to turn the evaluation silent.

The above example shows one predicate starting with a @ and another one starting with a #. The former
indicates to fizz that the iex.tick predicate is to be considered a triggering predicate while the latter, used
with iex.get is a standard non-primitive predicate. In theory, all predicates to knowledge could be triggering
but that will not be practical, as a single query may cause a long cascade of inferencing. Therefore, it is
something that must be specified.

Let’s now launch fizz and load iex.core.fizz and see that we are getting quotes every 5 seconds (we will
later change this to 10 seconds):

$./fizz.x64 iex.core.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loaded iex.core.fizz in 0.004s
load : loading completed in 0.005s
1525807078.352411 {AAPL = {quote = {latestPrice = 185.520000, change = 0.360000, latestUpdate = 1525807077067}}}
1525807083.910785 {AAPL = {quote = {latestPrice = 185.520000, change = 0.360000, latestUpdate = 1525807077067}}}
1525807088.292208 {AAPL = {quote = {latestPrice = 185.520000, change = 0.360000, latestUpdate = 1525807077067}}}
1525807093.201322 {AAPL = {quote = {latestPrice = 185.520000, change = 0.360000, latestUpdate = 1525807077067}}}
1525807098.198470 {AAPL = {quote = {latestPrice = 185.580000, change = 0.420000, latestUpdate = 1525807094800}}}
1525807103.228156 {AAPL = {quote = {latestPrice = 185.590000, change = 0.430000, latestUpdate = 1525807100087}}}

To make things more modular and facilitate further extensions of the application, we are going now to turn
the symbols and filter lists expected by the web API in independant factual knowledge that will get queried
each time we want a request to be sent to the web service. We will also sieze the opportunity to specify
two other stock tickers we are interested in. Create a new fizz source file called iex.vars.fizz and add the
following two knowledge definitions to it:

1 iex.symbols {

2
3 ([AAPL,GOOGL,MSFT]);

4
5 }

6
7 iex.filters {

8
9 ([latestPrice,change,changePercent,latestUpdate]);

10
11 }

3

Both declare a single statement that will be queried by the modified prototype of the iex.query elemental
in order to retrieve the lists. Here’s the new version of iex.query:

1 iex.query {

2
3 () :- @iex.tick(_,_),

4 #iex.symbols(:s),

5 #iex.filters(:f),

6 #iex.get({types=quote,symbols=:s,filter=:f},[:t,200,_,:c]),

7 console.puts(:t," ",:c),

8 hush;

9
10 }

In line 4 and 5 we fetch both lists and bound them to the variables s and f. We then use these two variables
to compose the query to be sent to the web API. The process by which bounded variables are replaced by
their bound values is called substitution. If we reload fizz with the updated file, we can verify that we are
now getting the three quotes we asked for:

$./fizz.x64 iex.core.fizz iex.vars.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loaded iex.core.fizz in 0.016s
load : loading completed in 0.016s
1525807526.571183 {AAPL = {quote = {latestPrice = 185.500000, change = 0.340000, changePercent = 0.001840, latestUpdate =

1525807525584}}, GOOGL = {quote = {latestPrice = 1059.200000, change = -0.260000, changePercent = -0.000250,
latestUpdate = 1525807469386}}, MSFT = {quote = {latestPrice = 95.600000, change = -0.620000, changePercent = -0.006440,
latestUpdate = 1525807523001}}}

1525807531.511069 {AAPL = {quote = {latestPrice = 185.500000, change = 0.340000, changePercent = 0.001840, latestUpdate =
1525807525584}}, GOOGL = {quote = {latestPrice = 1059.200000, change = -0.260000, changePercent = -0.000250,
latestUpdate = 1525807469386}}, MSFT = {quote = {latestPrice = 95.610000, change = -0.610000, changePercent = -0.006340,
latestUpdate = 1525807527562}}}

From JSON data to factual knowledge

Now that we are getting the data from the web API, we are going to look at turning them into factual
knowledge which can then be used in any sort of logical inferencing. For that, we are going to rely on an
elemental using procedural knowledge to process each set of quote data we get. But first, we need to modify
iex.query to break down the content of the root frame we are retrieving from the web API. For that, we
will use the primitive frm.fetch:

1 iex.query {

2
3 () :- @iex.tick(_,_),

4 #iex.symbols(:s),

5 #iex.filters(:f),

6 #iex.get({types=quote,symbols=:s,filter=:f},[:t,200,_,:c]),

7 frm.fetch(:c,:l,:d),

8 console.puts(:t," ",:l," ",:d),

9 hush;

10
11 }

On line 7, we provide to the primitive the value of the variable c which is unified on line 6 with the frame
containing the content received from the web service. Since the second and third terms are unbound variables,
the primitive will generate a statement for each of the key-value pairs in the frame. Each of these statements
will then be considered concurrently by the solver for the rest of the prototype execution. We can test this
if we save the modified file and start fizz again:

4

$./fizz.x64 iex.core.fizz iex.vars.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loaded iex.core.fizz in 0.016s
load : loading completed in 0.016s
1525837383.118558 AAPL {quote = {latestPrice = 186.050000, change = 0.890000, changePercent = 0.004810, latestUpdate =

1525809600267}}
1525837383.118558 GOOGL {quote = {latestPrice = 1058.590000, change = -0.870000, changePercent = -0.000820, latestUpdate =

1525809600267}}
1525837383.118558 MSFT {quote = {latestPrice = 95.810000, change = -0.410000, changePercent = -0.004260, latestUpdate =

1525809600220}}

We will now replace the call to the console.puts primitive by a predicate which will further process each of
the stock ticker’s data. In general, it is recommended to break down inferencing over multiple elementals to
take advantage of fizz ’s concurrent nature. Since each of the relevant quotes is contained in a frame under
the key quote, we will first extract the sub-frame by specifying it in the prototype’s entry-point:

1 iex.proc {

2
3 (:t,:l,{quote = :d}) :- console.puts(:l," : ",:d),

4 hush;

5 }

In order for a prototype to be selected by the solver, its entry-point must successfuly unify with the predicate
that is under consideration. That process will insure that the prototype will be executed only if the third
term is a frame which contains a value for the key quote. This value will be bound to the variable d. For
now we will just print it to the console.

We now modify iex.query as follows to query iex.proc with each of the fetched frames:

1 iex.query {

2
3 () :- @iex.tick(_,_),

4 #iex.symbols(:s),

5 #iex.filters(:f),

6 #iex.get({types=quote,symbols=:s,filter=:f},[:t,200,_,:c]),

7 frm.fetch(:c,:l,:d),

8 #iex.proc(:t,:l,:d),

9 hush;

10
11 }

Let’s run the modified knowledge:

$./fizz.x64 iex.core.fizz iex.vars.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loaded iex.core.fizz in 0.016s
load : loading completed in 0.016s
AAPL : {latestPrice = 186.050000, change = 0.890000, changePercent = 0.004810, latestUpdate = 1525809600267}
GOOGL : {latestPrice = 1058.590000, change = -0.870000, changePercent = -0.000820, latestUpdate = 1525809600267}
MSFT : {latestPrice = 95.810000, change = -0.410000, changePercent = -0.004260, latestUpdate = 1525809600220}

The next step we are going to look at is the transformation of the frame into a statement. We will accomplish
that with the primitives frm.fetch and assert. The latter allows for a statement constructed from a functor
to be declared and stored within the substrate. Here’s the modified iex.proc definition:

5

1 iex.proc {

2
3 (:t,:l,{quote = :d}) :- frm.fetch(:d,latestUpdate,:u), div(:u,1000,:rt),

4 frm.fetch(:d,latestPrice,:p),

5 frm.fetch(:d,change,:c),

6 frm.fetch(:d,changePercent,:cp),

7 assert(iex.quote.data(:l,:rt,:p,:c,:cp)),

8 hush;

9 }

Since the value we get for latestUpdate needs to be divided by a thousand, we do so in line 3 using the div
primitive. Once we have fetched the 4 values from the frame bounded to the variable d, we use assert to
create a new statement with the label iex.quote.data passing in it the stock ticker’s symbol, the timestamp
of the price update as well as the change value and percent of change (both of which are computed from the
price at the last closing). If we now runfizz again, we can observe the statements as they get generated:

$./fizz.x64 iex.core.fizz iex.vars.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loaded iex.core.fizz in 0.016s
load : loading completed in 0.016s
?- /spy(append,iex.quote.data)
spy : observing iex.quote.data
spy : S iex.quote.data(AAPL, 1525809600.267000, 186.050000, 0.890000, 0.004810) := 1.00 (100.000000)
spy : S iex.quote.data(GOOGL, 1525809600.267000, 1058.590000, -0.870000, -0.000820) := 1.00 (100.000000)
spy : S iex.quote.data(MSFT, 1525809600.220000, 95.810000, -0.410000, -0.004260) := 1.00 (100.000000)
spy : S iex.quote.data(AAPL, 1525809600.267000, 186.050000, 0.890000, 0.004810) := 1.00 (100.000000)
spy : S iex.quote.data(MSFT, 1525809600.220000, 95.810000, -0.410000, -0.004260) := 1.00 (100.000000)
spy : S iex.quote.data(GOOGL, 1525809600.267000, 1058.590000, -0.870000, -0.000820) := 1.00 (100.000000)

In order to see the statements we have used the console command /spy to observe anything happening for
the label iex.quote.data within the substrate. Take note of that command as it comes in handy when
debugging ...

As we can see in the the above example, we are asserting the exact same statement as we may be fetching
the data from the web API more often than they get updated (this will also be the case when stock mar-
ket is closed). While fizz can avoid having multiple copies of the same statement in the substrate, there’s
a runtime cost associated with the assertions which we may want to avoid. At the same time, we will
want to be able to query the very last price for a given stock ticker. The easiest way to do this will be
to store in a factual knowledge the timestamp (the latestUpdate value we retrieved earlier) of each stock
ticker we care about. Once we have the timestamp, we can use that knowledge in iex.proc to decide if
the quote data we are processing is more recent than what we received last, and thus avoid asserting it again.

To implement this, we are going to start a new fizz source file which we will call iex.data.fizz. We will
also use it store the quotes we will be receiving and later we will save the data into it. We write the following
two elemental definitions in it:

1 iex.quote.last {

2 class = MRKCLettered,

3 no.match = fail

4 } {}

5
6 iex.quote.data {

7 class = MRKCLettered

8 } {}

Since both will only be containing factual knowledge, they are based on the MRKCLettered class of elemen-
tal. For iex.quote.last, we specify the property no.match with the value of fail to force the elemental

6

to answer a query for which it doesn’t have a successful answer by a fail instead of staying silent. Since
inferencing in fizz can be faced with multiple instances of an iex.quote.last elemental (same or different
substrate), the default behavior for such class of elemental is to stay silent when a query cannot be unified to
any existing statement, as other elementals may be able to unify successfuly. Afterall, a lack of information
does not necessary means that a predicate is false. In this example, we do need iex.quote.last, for which
there will only be a single instance, to let us know when no match was found as it will always be the case
for the first timestamp of a stock ticker.

We are now ready to modify iex.proc to add a iex.quote.last predicate in order to filter out the already
received data. Once we really have new data, we will be replacing the previously asserted statement for the
stock ticker by a new one with the new timestamp. For this, fizz provides a primitive called change:

1 iex.proc {

2
3 (:t,:l,{quote = :d}) :- frm.fetch(:d,latestUpdate,:u), div(:u,1000,:rt),

4 !#iex.quote.last(:l,:rt),

5 change([iex.quote.last(:l,_)],[iex.quote.last(:l,:rt)]),

6 frm.fetch(:d,latestPrice,:p),

7 frm.fetch(:d,change,:c),

8 frm.fetch(:d,changePercent,:cp),

9 #assert(iex.quote.data(:l,:rt,:p,:c,:cp)),

10 hush;

11 }

Line 4 and 5 are the additions we made. We use ! in front of the iex.quote.last predicate, to indicate
that we are only interested by the failure to unify any of the statements stored in that knowledge. When the
predicate is satisfied, that is when the last timestamp is different (or if this is the first data we are receiving
for the particular ticker), the solver will continue onto the primitive change, which will request from the
substrate to get the statement described (as a functor) in the first list replaced by the a statement build from
the functor given in the second list. Since we do not, here, know the value of the last timestamp for the stock
ticker, we use a wildcard variable to insure that whatever it was, the statement will be removed and replaced
by the one with the new timestamp. Please note that the primitive change is asynchronous, meaning that
the replacement of the statement will most likely not have been executed when the following predicates get
evaluated. Depending on what the prototype is doing, this may be an issue.

To get a sense of what’s going on when the application will be running, without having to use the /spy

console command, we also changed the predicate to the primitive assert to a knowledge based predicate (by
prefixing it with #). We can then add the following procedural knowledge to the file iex.core.fizz:

1 assert {

2
3 (:f) :- console.puts("assert: ",:f), assert(:f);

4
5 }

This provides us with an easy way to output every statement that gets asserted at runtime. Let’s try this
out now:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.005s
load : loaded iex.core.fizz in 0.012s
load : loading completed in 0.012s
assert: iex.quote.data(AAPL, 1525896000.459000, 187.360000, 1.310000, 0.007040)
assert: iex.quote.data(GOOGL, 1525896000.446000, 1088.950000, 30.360000, 0.028680)

7

assert: iex.quote.data(MSFT, 1525896000.207000, 96.940000, 1.130000, 0.011790)
?- #iex.quote.data(AAPL,:t,:p,_,_)
-> (1525896000.459000 , 187.360000) := 1.00 (0.001) 1
?- #iex.quote.last(AAPL,:t)
-> (1525896000.459000) := 1.00 (0.001) 1

You will note that this time around, we only saw a single assert (even though we let the application run
for 15 seconds) for each of the stock tickers since this was captured past 11:00PM PST. And just to verify,
we also queried the iex.quote.data and iex.quote.last elementals. If we now run the application when
stocks are trading, then we will get something like this:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.005s
load : loaded iex.core.fizz in 0.012s
load : loading completed in 0.012s
assert: iex.quote.data(AAPL, 1525976891.857000, 189.980000, 2.620000, 0.013980)
assert: iex.quote.data(GOOGL, 1525976729.736000, 1101.600000, 12.650000, 0.011620)
assert: iex.quote.data(MSFT, 1525976897.159000, 97.290000, 0.350000, 0.003610)
assert: iex.quote.data(AAPL, 1525976901.440000, 189.970000, 2.610000, 0.013930)
assert: iex.quote.data(MSFT, 1525976901.057000, 97.300000, 0.360000, 0.003710)
assert: iex.quote.data(AAPL, 1525976909.107000, 189.970000, 2.610000, 0.013930)
assert: iex.quote.data(AAPL, 1525976913.318000, 189.970000, 2.610000, 0.013930)
assert: iex.quote.data(MSFT, 1525976912.991000, 97.290000, 0.350000, 0.003610)
assert: iex.quote.data(AAPL, 1525976931.462000, 190, 2.640000, 0.014090)
assert: iex.quote.data(AAPL, 1525976934.889000, 189.990000, 2.630000, 0.014040)

Last known ticker’s price and reactive behaviors

An easy query to implement and likely a common request, would be to get the latest stock price for a given
stock ticker. To implement it, we would have to first retrieve the last timestamp for the stock ticker, and then
the corresponding price value. We implement this in the following procedural knowledge iex.quote.price:

1 iex.quote.price {

2
3 (:ticket,:value) :- #iex.quote.last(:ticket,:stamp), #iex.quote.data(:ticket,:stamp,:value,_,_);

4
5 }

As we only care about the price of the quote at that time, we use once again a wildcard variable for the last
two terms of the predicate. The following example shows how the returned value change over consecutive
calls as the data stored in the substrate changes in the background:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.003s
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.005s
load : loaded iex.core.fizz in 0.012s
load : loading completed in 0.012s
assert: iex.quote.data(AAPL, 1525977472.854000, 189.700000, 2.340000, 0.012490)
assert: iex.quote.data(GOOGL, 1525977463.290000, 1099.900000, 10.950000, 0.010060)
assert: iex.quote.data(MSFT, 1525977464.709000, 97.200000, 0.260000, 0.002680)
?- #iex.quote.price(AAPL,:v)
assert: iex.quote.data(AAPL, 1525977479.127000, 189.720000, 2.360000, 0.012600)
assert: iex.quote.data(AAPL, 1525977482.697000, 189.730000, 2.370000, 0.012650)
assert: iex.quote.data(MSFT, 1525977493.860000, 97.200000, 0.260000, 0.002680)
assert: iex.quote.data(AAPL, 1525977497.124000, 189.710000, 2.350000, 0.012540)

8

-> (189.710000) := 1.00 (0.003) 1
assert: iex.quote.data(AAPL, 1525977502.502000, 189.740000, 2.380000, 0.012700)
assert: iex.quote.data(MSFT, 1525977502.783000, 97.210000, 0.270000, 0.002790)
?- #iex.quote.price(AAPL,:v)
-> (189.740000) := 1.00 (0.003) 1

Next, let’s look at how we would setup an elemental to watch over any changes in the price of the stock
tickers, and notify us when, for instance, the value goes above or below a certain threshold value. First we
are going to add in iex.vars.fizz a new functional knowledge definition which will be storing the threshold
value for each of the stock tickers:

1 iex.thresholds {

2
3 (AAPL,190);

4 (GOOGL,1100);

5 (MSFT,100);

6
7 }

We then create a new procedural knowledge definition in iex.core.fizz called iex.quote.watch, where
each defined prototype will be responsible for watching over a specific situation. In this example, we will
have a single one:

1 iex.quote.watch {

2
3 signs = {}

4
5 } {

6
7 () :- @iex.quote.data(:ticker,_,:value,_,_),

8 #iex.thresholds(:ticker,:t),

9 cmp(:value,:t,:d),

10 peek(signs,:s), frm.fetch(:s,:ticker,_?[neq(:d)],0),

11 frm.store(:s,:ticker,:d,:s2), poke(signs,:s2),

12 #iex.quote.watch.report(:ticker,:value,:d),

13 hush;

14
15 }

Its logic is fairly simple: when a new iex.quote.data statement is asserted (line 7), we retrieve the corre-
sponding threshold value (line 8) then compare both values (using the primitive cmp), so that the variable d
will be bound to the value 0, 1 or -1). In order to be able to only report once when the threshold is passed,
we need to be able to recall the ticker’s position in regard to the threshold. In this example, we are using
an elemental’s property as memory to store the sign of the difference for each stock tickers. We will store
them in a frame under the key signs. In line 10, we fetch the frame from the properties with the primitive
peek, then check that the value stored for the stock ticker is different from the one we are currently dealing
with. If this is the first time that we are getting a quote for this stock ticker, then the primitive frm.fetch

will unify it’s third term with its fourth (which is considered to be the default value). We use as third term
a constrained wildcard variable to insure that we only continue the inferencing if the sign of the difference is
really different from the last one. Upon continuation, line 11, we store the new sign for the stock ticker in
a new frame (along whatever else is stored in the frame we have read from the properties earlier), then use
the poke primitive to store it in the property. We also use another elemental iex.quote.watch.report to
compose an appropriate message to the user. This elemental will select the correct prototype to be executed
according to the third term of the queries it will get (the price comparisons):

1 iex.quote.watch.report {

2
3 (:ticker,:value,0) :- console.puts("iex.quote.watch: ",:ticker," price at threshold");

4 (:ticker,:value,1) :- console.puts("iex.quote.watch: ",:ticker," price above threshold (",:value,")");

5 (:ticker,:value,-1) :- console.puts("iex.quote.watch: ",:ticker," price below threshold (",:value,")");

6 }

9

Automatically saving the data

As the application runs, we may want to keep a history of the stock ticker’s prices across separate execu-
tions. To support this, we are going to add an automatic saving of the iex.quote.last and iex.quote.data

knowledge to a file. Ideally, as the number of statements may get large over time, it may be more suitable
to deploy a more complex saving strategy (e.g. using a different set of elementals each day), but this isn’t
the subject of this article. Note, also, that saving the data to a fizz ’s source file isn’t the only option. More
on this in the user manual.

Since it will be costly to save each time we add a new statement, we are going to use a second ticker elemental
with, say, an interval value of thirty seconds. Here’s the definition we are adding to iex.core.fizz:

1 auto.save.tick {

2 class = FZZCTicker,

3 tick = 30

4 } {}

We then need to add a second elemental which will use auto.save.tick as a trigger. When this occurs, it
will use the console.exec primitive to request the elementals storing the data be saved in iex.data.fizz,
overwriting any older data:

1 auto.save {

2
3 () :- @auto.save.tick(:n,_),

4 console.exec(save("iex.data2.fizz",iex.quote.data,iex.quote.last)),

5 hush;

6
7 }

Let’s give this a try:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.002s
load : loaded iex.vars.fizz in 0.004s
load : loaded iex.core.fizz in 0.016s
load : loading completed in 0.016s
assert: iex.quote.data(AAPL, 1526068800.403000, 188.590000, -0.720100, -0.003800)
assert: iex.quote.data(GOOGL, 1526068800.466000, 1103.380000, -2.090000, -0.001890)
assert: iex.quote.data(MSFT, 1526068800.325000, 97.700000, -0.210000, -0.002140)
iex.quote.watch: AAPL price below threshold (188.590000)
iex.quote.watch: GOOGL price above threshold (1103.380000)
iex.quote.watch: MSFT price below threshold (97.700000)
save : completed in 0.001s.

If you let this application run for an extended period of time, it will eventually reaches a time when the
stock market is closed and thus we will be saving the data unnecessarily as it would have not changed. We
can fix this by using the assertions of new iex.quote.last statements as an indication that we should save
the data when the tick happens. This can be easily done by modifying auto.save to use a property as a
flag indicating if we should save (as new statements were asserted since the last time the data were saved)
or skip when a tick happens:

1 auto.save {

2
3 replies.are.triggers = no,

4 save = no

5

10

6 } {

7
8 () :- @auto.save.tick(:n,_),

9 peek(save,yes),

10 console.exec(save("iex.data.fizz",iex.quote.data,iex.quote.last)),

11 poke(save,no),

12 hush;

13
14 () :- @iex.quote.last(_,_),

15 poke(save,yes),

16 hush;

17
18 }

In line 14 to 16 we added a new prototype to handle the triggers from iex.quote.last and toggle the save
property to yes. We also modified the original prototype to check that the same property has a value of
yes when we get triggered by auto.save.tick, then set the value of it back to no once we have requested
the data to be saved. If the peek predicate fails to be satisfied, the inferencing will bail and the saving will
not be performed. On line 3, we have defined a property replies.are.triggers with a value of no. This
instructs the elemental to not consider replies to queries made on the substrate as a trigger, which is the
default behavior. Without this, every query on iex.quote.last will have triggered the elemental causing
unnecessary saving to occur.

Changing the stock tickers list

Let’s say that you wanted to add NVIDIA (ticker: NVDA) to the list of stocks you care about. We could
just edit the source file (iex.vars.fizz) and modify the definition of iex.symbols, but it will be more
practical to have a way to manage that list while the system is running. We can do this by introducing two
new elementals in iex.core.fizz, one to be used to add a new ticker and one to remove it:

1 iex.symbols.add {

2
3 (:s) :- #iex.symbols(:l), lst.except(:s,:l), change([iex.symbols(:l)],[iex.symbols([:s|:l])]);

4
5 }

6
7 iex.symbols.del {

8
9 (:s) :- #iex.symbols(:l), lst.remove(:s,:l,:l2), change([iex.symbols(:l)],[iex.symbols(:l2)]);

10
11 }

They both work in similar way: for adding a stock ticker, the current list is retrieved from iex.symbols,
then we either insure that the symbol isn’t already present (with lst.except), and then use change to
replace the statement holding the list with one where the new stock ticker has been appended. In the case
of removing a stock ticker, we attempt the removal of it from the list (with lst.remove) and only if that
succeeds do we replace the statement holding the list with one where the old stock ticker has been removed.

Let’s give that a try:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.vars.fizz in 0.006s
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.008s
load : loaded iex.core.fizz in 0.023s
load : loading completed in 0.024s
assert: iex.quote.data(AAPL, 1526068800.403000, 188.590000, -0.720100, -0.003800)
assert: iex.quote.data(GOOGL, 1526068800.466000, 1103.380000, -2.090000, -0.001890)
assert: iex.quote.data(MSFT, 1526068800.325000, 97.700000, -0.210000, -0.002140)

11

iex.quote.watch: AAPL price below threshold (188.590000)
iex.quote.watch: GOOGL price above threshold (1103.380000)
iex.quote.watch: MSFT price below threshold (97.700000)
?- #iex.symbols.add(NVDA)
save : completed in 0.001s.
-> () := 1.00 (0.001) 1
assert: iex.quote.data(NVDA, 1526068800.277000, 254.530000, -5.600000, -0.021530)

You will note that a new statement for the NVDA stock wasn’t asserted right away, but it’s only at the next
periodic fetch that we get the latest known value for the new ticker. We can easily modify the application
to immediately fetch the latest from the web API by turning the iex.symbols predicate in iex.get into a
trigger predicate. We will also add the replies.are.triggers property to it as we do not want the query
that are done by iex.symbols.add to cause the prototype to execute:

1 iex.query {

2 replies.are.triggers = no

3 } {

4
5 () :- @iex.tick(_,_),

6 @iex.symbols(:s),

7 #iex.filters(:f),

8 #iex.get({types=quote,symbols=:s,filter=:f},[:t,200,_,:c]),

9 frm.fetch(:c,:l,:d),

10 #iex.proc(:t,:l,:d),

11 hush;

12
13 }

If we restart the application now and use iex.symbols.add again, the data will be fetched right away:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.core.fizz ...
load : loading iex.data.fizz ...
load : loading iex.vars.fizz ...
load : loaded iex.data.fizz in 0.003s
load : loaded iex.vars.fizz in 0.004s
load : loaded iex.core.fizz in 0.019s
load : loading completed in 0.020s
assert: iex.quote.data(AAPL, 1526068800.403000, 188.590000, -0.720100, -0.003800)
assert: iex.quote.data(GOOGL, 1526068800.466000, 1103.380000, -2.090000, -0.001890)
assert: iex.quote.data(MSFT, 1526068800.325000, 97.700000, -0.210000, -0.002140)
iex.quote.watch: AAPL price below threshold (188.590000)
iex.quote.watch: GOOGL price above threshold (1103.380000)
iex.quote.watch: MSFT price below threshold (97.700000)
?- #iex.symbols.add(NVDA)
-> () := 1.00 (0.001) 1
assert: iex.quote.data(NVDA, 1526068800.277000, 254.530000, -5.600000, -0.021530)

To add a threshold value for the stock ticker we are adding, we could create a similar set of procedural
knowledge but we could also modify iex.symbols.add and iex.symbols.del to deal with an optional
threshold value:

1 iex.symbols.add {

2
3 (:s) :- #iex.symbols(:l), lst.except(:s,:l),

4 change([iex.symbols(:l)],[iex.symbols([:s|:l])]),

5 repeal(iex.thresholds(:s,_));

6 (:s,:t) :- #iex.symbols(:l), lst.except(:s,:l),

7 change([iex.symbols(:l)],[iex.symbols([:s|:l])]),

8 change([iex.thresholds(:s,_)],[iex.thresholds(:s,:t)]);

9
10 }

11
12 iex.symbols.del {

13
14 (:s) :- #iex.symbols(:l), lst.remove(:s,:l,:l2),

12

15 change([iex.symbols(:l)],[iex.symbols(:l2)]),

16 repeal(iex.thresholds(:s,_));

17
18 }

In iex.symbols.add we added a new prototype with an arity of two and add to it a call to the change

primitive to replace whatever value of threshold we may have in the iex.thresholds knowledge (including
none) by a new statement containing the new value. In iex.symbols.del, we just added a call to repeal

which will remove the corresponding (if any) statement from iex.thresholds.

The last piece to add now, is the saving of the updated iex.symbols knowledge. Assuming that the list of
stock tickers doesn’t change often, we are going to set it up to be saved only when its content is changed.
The following knowledge definition, which we add to iex.core.fizz will take care of this:

1 sync.save {

2 replies.are.triggers = no

3 } {

4
5 () :- @iex.symbols(:s), console.exec(save("iex.vars.fizz",iex.symbols,iex.filters,iex.thresholds));

6
7 }

We can then try this:

$./fizz.x64 iex.core.fizz iex.vars.fizz iex.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.vars.fizz ...
load : loading iex.core.fizz ...
load : loaded iex.vars.fizz in 0.002s
load : loading iex.data.fizz ...
load : loaded iex.data.fizz in 0.002s
load : loaded iex.core.fizz in 0.020s
load : loading completed in 0.020s
assert: iex.quote.data(AAPL, 1526068800.403000, 188.590000, -0.720100, -0.003800)
assert: iex.quote.data(GOOGL, 1526068800.466000, 1103.380000, -2.090000, -0.001890)
assert: iex.quote.data(MSFT, 1526068800.325000, 97.700000, -0.210000, -0.002140)
iex.quote.watch: AAPL price below threshold (188.590000)
iex.quote.watch: GOOGL price above threshold (1103.380000)
iex.quote.watch: MSFT price below threshold (97.700000)
?- #iex.symbols.add(NVDA,250)
-> () := 1.00 (0.001) 1
save : completed in 0.008s.
assert: iex.quote.data(NVDA, 1526068800.277000, 254.530000, -5.600000, -0.021530)
iex.quote.watch: NVDA price above threshold (254.530000)
?- #iex.symbols.del(NVDA)
save : completed in 0.001s.
-> () := 1.00 (0.002) 1

Adding some predictions

After having collected a full day worth of price variations, we now have enough data to look into turning
this into something potentially insightful: We’re going to build a model (using a neural network) which
given the prices of three stocks will give us a prediction for the fourth one. Please note this is just a ex-
ample of a possible use case and no warranty of any kind is made here on the real world validity of such model.

Lets assume that we have saved a full day of trading into a fizz source file called iex.day.fizz. We first
need to convert it into a format that we can feed into a network (that is a single statement per training
sample), which means we need to string together the price values of all four stocks at any given time. For
this, let’s create a new file iex.comb.fizz and insert the following procedural knowledge into it:

13

1 iex.comb {

2
3 (:t0,:t1,:t2,:t3) :- #iex.quote.data(:t0,:time,:p0,_,_),

4 #iex.quote.data(:t1,_?[aeq(:time,20)],:p1,_,_),

5 #iex.quote.data(:t2,_?[aeq(:time,20)],:p2,_,_),

6 #iex.quote.data(:t3,_?[aeq(:time,20)],:p3,_,_),

7 bundle(iex.comb.data(:p0,:p1,:p2,:p3),1,{},4096),

8 hush;

9
10 }

The purpose of iex.comb is to combine the prices of four stocks into a single statement. This is done by
querying iex.quote.data for each of the stock tickers using the timestamp we retreived from the first pred-
icate as a constraint for the three others. The constraints are using the primitive aeq and will ensure that
the prices we getting are not any older or more recent than 20 seconds from the timestamp we picked with
the first predicate. When one of the tickers has a price that is too out of sync with the rest, we will drop
the combination. As we have over 3000 statements in iex.quote.data and stock prices fluctuate mostly
independantly, we should expect a lot of statements to be asserted. To minimize the cost on the runtime,
we are using the bundle primitive to group and assert the statements, 4096 at a time.

Let’s give this a try. Since this is going to be an intensive operation for fizz , we will be use the console
command /scan to keep an eye on the substrate activity:

$./fizz.x64 iex.comb.fizz iex.day.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.comb.fizz ...
load : loading iex.day.fizz ...
load : loaded iex.comb.fizz in 0.002s
load : loaded iex.day.fizz in 0.771s
load : loading completed in 0.772s
?- #iex.comb(NVDA,AAPL,GOOGL,MSFT)
?- /scan
scan : e:7 k:3 s:3835 p:2 u:7.88 t:2 q:2136 r:2137 z:0
scan : e:7 k:3 s:3835 p:2 u:8.13 t:2 q:2354 r:2356 z:0 (qps:872.0 rps:876.0)
scan : e:7 k:3 s:3835 p:2 u:8.38 t:3 q:2490 r:2490 z:0 (qps:541.8 rps:533.9)
scan : e:7 k:3 s:3835 p:2 u:8.63 t:1 q:2649 r:2649 z:0 (qps:641.1 rps:641.1)
scan : e:7 k:3 s:3835 p:2 u:8.88 t:5 q:2673 r:2671 z:0 (qps:94.5 rps:86.6)
scan : e:7 k:3 s:3835 p:2 u:9.13 t:1 q:2691 r:2692 z:0 (qps:73.2 rps:85.4)
scan : e:7 k:3 s:3835 p:2 u:9.38 t:4 q:2755 r:2754 z:0 (qps:252.0 rps:244.1)
...
scan : e:7 k:3 s:3835 p:2 u:22.89 t:5 q:4171 r:8022 z:0 (qps:0.0 rps:588.9)
scan : e:7 k:3 s:3835 p:2 u:23.14 t:0 q:4171 r:8235 z:0 (qps:0.0 rps:869.4)
scan : e:8 k:4 s:7931 p:2 u:23.39 t:2 q:4171 r:8383 z:0 (qps:0.0 rps:587.3)
scan : e:8 k:4 s:7931 p:2 u:23.64 t:0 q:4171 r:8578 z:0 (qps:0.0 rps:786.3)
scan : e:8 k:4 s:7931 p:2 u:23.89 t:5 q:4171 r:8755 z:0 (qps:0.0 rps:694.1)
scan : e:8 k:4 s:7931 p:2 u:24.14 t:0 q:4171 r:8915 z:0 (qps:0.0 rps:653.1)
scan : e:8 k:4 s:7931 p:2 u:24.39 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:352.0)
scan : e:8 k:4 s:7931 p:2 u:24.64 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : e:8 k:4 s:7931 p:2 u:24.89 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : e:9 k:5 s:8669 p:2 u:25.14 t:1 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : e:9 k:5 s:8669 p:2 u:25.39 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : e:9 k:5 s:8669 p:2 u:25.64 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : e:9 k:5 s:8669 p:2 u:25.89 t:0 q:4171 r:9003 z:0 (qps:0.0 rps:0.0)
scan : completed.
?- /stats
stats : e:9 k:5 s:8669 p:2 u:31.48 t:0 q:4171 r:9003 z:0

We will then save the generated data into iex.comb.data.fizz so that we do not have to regenerate them:

?- /list
list : efefdefe-7649-e84b-678b-2ef46f209d8b MRKCBFSolver iex.comb
list : ccbe9bfd-9800-714a-3c89-b485b676e3b3 MRKCLettered iex.comb.data
list : 61136792-7d9f-9645-6cb8-fedbc125b3b7 MRKCLettered iex.comb.data
list : 747c1a40-d6b4-7b46-c4a5-d09fd36500e6 MRKCLettered iex.quote.data
list : 4 elementals listed in 0.000s
?- /save("iex.comb.data.fizz",iex.comb.data)
save : completed in 0.078s.

14

Next, we are going to setup a neural network elemental (of class FZZCFFBNetwork) so that can have it learn
from the practice data we just generated, and hopefully be later able to predict the price of a stock based on
any three others. Create a new fizz source file called iex.ffbn.fizz and place the following definition in it:

1 iex.ffbn {

2 class = FZZCFFBNetwork,

3 alias = iex.ffbn,

4 query = iex.comb.data(_,_,_,_),

5 generalize = [[i,i,i,o],[i,i,o,i],[i,o,i,i],[o,i,i,i]],

6 formatting = [d,d,d,d],

7 hidden_layers = 4,

8 neurons_in_hidden_layers = 12

9 } {}

The elemental’s properties instructs it to create four neural networks based on the statements it will be
receiving (the generalize property provides a list of the mapping of the statements’ terms with the inputs
and outputs expected by the networks) as answers to the query it will be asking to the substrate (the query
property). We also indicate (with the formatting property) that all terms are numbers (d stand for deci-
mal). Finally, we indicate that each of the four networks must have 4 hidden layers, each composed of 12
neurons.

Defined as such, a FZZCFFBNetwork elemental is ready for the training samples to be provided and for the
training to be executed. We do not need to process the iex.comb.data further as they will be automatically
normalized before the training. All that is left for us, is to start fizz by loading iex.comb.data.fizz and
iex.ffbn.fizz:

$./fizz.x64 iex.ffbn.fizz iex.comb.data.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.ffbn.fizz ...
load : loading iex.comb.data.fizz ...
load : loaded iex.ffbn.fizz in 0.003s
load : loaded iex.comb.data.fizz in 1.371s
load : loading completed in 1.372s
?- /list
list : 877ffaaa-da0b-b749-b0b5-d749600d7e22 MRKCLettered iex.comb.data
list : a2ce6e49-3f3a-694b-38be-cc20bb37525f MRKCLettered iex.comb.data
list : b9d0b414-ba9a-874d-4bae-0b6e491a5ca5 FZZCFFBNetwork iex.ffbn (iex.ffbn)
list : 3 elementals listed in 0.000s

To communicate with the iex.ffbn elemental outside of the common query/reply pattern, we need to use
the console command /tell. The first of such commands we are going to initiate is to get the elemental to
post the query and collect all answers it will receive:

?- /tells(iex.ffbn,acquires)
iex.ffbn - requesting training data ...
iex.ffbn : received 3778 statements

Once iex.ffbn tells us that it has received all the expected statements (3778 in this case), we are ready to
start the training. Note that this part may take a while as the elemental does it on the CPU and not the
GPU (as of this writing). It does, however, get executed in background threads so the substrate should stay
responsive:

?- /tells(iex.ffbn,practice(0.8,1024,0.1))
iex.ffbn - training set has 3778 samples
iex.ffbn - training in progress
iex.ffbn - training in progress
iex.ffbn - training in progress
iex.ffbn - training in progress
iex.ffbn - practice completed (0.000075,0.005914) in 38.96s
iex.ffbn - practice completed (0.000222,0.007412) in 39.50s

15

iex.ffbn - practice completed (0.000077,0.005348) in 73.31s
iex.ffbn - practice completed (0.000112,0.005373) in 74.19s

The terms used in the practice functor specifies the training parameters: the first indicates the ratio
between training data and validation data (0.8 here means 80 percent of the 3778 statements will be used
for training and 20 percent for validation). The second term is the number of epochs to train the model for,
and finally the learning rate. For each of the trained networks, the elemental will output the practice and
validation errors as seen above. From there, the four networks are ready to predict using the same type of
query that you will use with any other elemental. For example:

?- #iex.ffbn(:p, 188.590000, 1103.380000, 97.7)
-> (254.693631) := 0.99 (0.001) 1
?- #iex.ffbn(254.640000, 188.030000, :p, 97.865000)
-> (1106.294365) := 1.00 (0.001) 1

To avoid having to retrain the networks, we will save them as part of the elemental’s properties with the
console command /save:

?- /save("iex.ffbn.fizz",iex.ffbn)
save : completed in 0.009s.

If you have the curiosity to open iex.ffbn.fizz now, you will see that the model was encoded within a
binary term under the property data. From then on, unless we want to retrain our model, we just need to
load iex.ffbn.fizz to have the ability to predict:

$./fizz.x64 iex.ffbn.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

load : loading iex.ffbn.fizz ...
load : loaded iex.ffbn.fizz in 0.014s
load : loading completed in 0.014s
?- #iex.ffbn(254.640000, 188.030000, :p, 97.865000)
-> (1106.294365) := 1.00 (0.001) 1
?- #iex.ffbn(:p, 188.590000, 1103.380000, 97.7)
-> (254.693631) := 0.99 (0.001) 1

To conclude this section, and this article, lets now look at integrating the model we have just build to test
the validity of our predictions as we get new stock ticker prices throughout the day. To that effect, create a
new fizz source file called iex.predict.fizz. First, we will write an procedural knowledge which, not unlike
what we have done with iex.quote.watch, will rely on iex.quote.data as a trigger. For each new quote
statement we will fetch the closest (timestamp wise) known price for the three other stock tickers and then
use iex.ffbn to predict the price. Finally, we will report on the difference between our model and reality:

1 iex.predict {

2
3 () :- @iex.quote.data(NVDA,:t,:n,_,_),

4 #iex.quote.data(AAPL,_?[aeq(:t,20)],:a,_,_),

5 #iex.quote.data(GOOGL,_?[aeq(:t,20)],:g,_,_),

6 #iex.quote.data(MSFT,_?[aeq(:t,20)],:m,_,_),

7 #iex.ffbn(:x,:a,:g,:m),

8 #iex.predict.report(NVDA,:t,:x,:n),

9 hush;

10
11 () :- @iex.quote.data(AAPL,:t,:a,_,_),

12 #iex.quote.data(NVDA,_?[aeq(:t,20)],:n,_,_),

13 #iex.quote.data(GOOGL,_?[aeq(:t,20)],:g,_,_),

14 #iex.quote.data(MSFT,_?[aeq(:t,20)],:m,_,_),

15 #iex.ffbn(:n,:x,:g,:m),

16 #iex.predict.report(AAPL,:t,:x,:a),

17 hush;

18
19 () :- @iex.quote.data(GOOGL,:t,:g,_,_),

16

20 #iex.quote.data(NVDA,_?[aeq(:t,20)],:n,_,_),

21 #iex.quote.data(AAPL,_?[aeq(:t,20)],:a,_,_),

22 #iex.quote.data(MSFT,_?[aeq(:t,20)],:m,_,_),

23 #iex.ffbn(:n,:a,:x,:m),

24 #iex.predict.report(GOOGL,:t,:x,:g),

25 hush;

26
27 () :- @iex.quote.data(MSFT,:t,:m,_,_),

28 #iex.quote.data(NVDA,_?[aeq(:t,20)],:n,_,_),

29 #iex.quote.data(AAPL,_?[aeq(:t,20)],:a,_,_),

30 #iex.quote.data(GOOGL,_?[aeq(:t,20)],:g,_,_),

31 #iex.ffbn(:n,:a,:g,:x),

32 #iex.predict.report(MSFT,:t,:x,:m),

33 hush;

34
35 }

The procedural knowledge iex.predict.report simply computes an error value between the predicted and
actual value and asserts a new statement so that we can later review it:

1 iex.predict.report {

2
3 (:s,:t,:p,:a) :- sub(:p,:a,:d),mao.abs(:d,:e),div(:e,:a,:e2),mul(:e2,100,:err),

4 #assert(iex.predict.data(:s,:t,:p,:a,:err));

5
6 }

With a bit more work, we can repurpose part of iex.predict to build a procedural knowledge which given a
timestamp and a ticker symbol will give us the price at that time as well as the price we would have predicted
based on the three others prices around the same time. Add the following definition to the same file:

1 iex.predict.price {

2
3 (NVDA,:t,:v,:p,:e) :- #iex.quote.data(NVDA,:rt?[aeq(:t,30)],:v,_,_),

4 #iex.quote.data(AAPL,_?[aeq(:rt,30)],:a,_,_),

5 #iex.quote.data(GOOGL,_?[aeq(:rt,30)],:g,_,_),

6 #iex.quote.data(MSFT,_?[aeq(:rt,30)],:m,_,_),

7 #iex.ffbn(:p,:a,:g,:m),

8 sub(:p,:v,:d), mao.abs(:d,:abs), div(:abs,:v,:e2), mul(:e2,100,:e);

9
10 (AAPL,:t,:v,:p,:e) :- #iex.quote.data(AAPL,:rt?[aeq(:t,30)],:v,_,_),

11 #iex.quote.data(NVDA,_?[aeq(:rt,30)],:n,_,_),

12 #iex.quote.data(GOOGL,_?[aeq(:rt,30)],:g,_,_),

13 #iex.quote.data(MSFT,_?[aeq(:rt,30)],:m,_,_),

14 #iex.ffbn(:n,:p,:g,:m),

15 sub(:p,:v,:d), mao.abs(:d,:abs), div(:abs,:v,:e2), mul(:e2,100,:e);

16
17 (GOOGL,:t,:v,:p,:e) :- #iex.quote.data(GOOGL,:rt?[aeq(:t,30)],:v,_,_),

18 #iex.quote.data(NVDA,_?[aeq(:rt,20)],:n,_,_),

19 #iex.quote.data(AAPL,_?[aeq(:rt,20)],:a,_,_),

20 #iex.quote.data(MSFT,_?[aeq(:rt,20)],:m,_,_),

21 #iex.ffbn(:n,:a,:p,:m),

22 sub(:p,:v,:d), mao.abs(:d,:abs), div(:abs,:v,:e2), mul(:e2,100,:e);

23
24
25 (MSFT,:t,:v,:p,:e) :- #iex.quote.data(MSFT,:rt?[aeq(:t,30)],:v,_,_),

26 #iex.quote.data(NVDA,_?[aeq(:rt,20)],:n,_,_),

27 #iex.quote.data(AAPL,_?[aeq(:rt,20)],:a,_,_),

28 #iex.quote.data(GOOGL,_?[aeq(:rt,20)],:g,_,_),

29 #iex.ffbn(:n,:a,:g,:p),

30 sub(:p,:v,:d), mao.abs(:d,:abs), div(:abs,:v,:e2), mul(:e2,100,:e);

31
32 }

Here’s an example using stock prices collected on May 16th:

$./fizz.x64 iex.data.051618.fizz iex.predict.fizz iex.ffbn.fizz
fizz 0.3.0-X (20180519.2228) [x64|8|w|l]

17

load : loading iex.data.051618.fizz ...
load : loading iex.predict.fizz ...
load : loaded iex.predict.fizz in 0.017s
load : loading iex.ffbn.fizz ...
load : loaded iex.ffbn.fizz in 0.010s
load : loaded iex.data.051618.fizz in 1.135s
load : loading completed in 1.136s
?- #iex.predict.price(MSFT,1526484458,:v,:p,:e)
-> (96.720000 , 97.849645 , 1.167954) := 0.99 (0.057) 1
-> (96.720000 , 97.848788 , 1.167067) := 0.99 (0.062) 2
-> (96.720000 , 97.852346 , 1.170747) := 0.99 (0.064) 3
-> (96.720000 , 97.856259 , 1.174792) := 0.99 (0.067) 4
-> (96.720000 , 97.857295 , 1.175864) := 0.99 (0.072) 5
-> (96.720000 , 97.849304 , 1.167602) := 0.99 (0.082) 6
-> (96.720000 , 97.848452 , 1.166721) := 0.99 (0.087) 7
-> (96.720000 , 97.851987 , 1.170375) := 0.99 (0.089) 8
-> (96.720000 , 97.855874 , 1.174394) := 0.99 (0.095) 9
-> (96.720000 , 97.856904 , 1.175459) := 0.99 (0.097) 10
?- #iex.predict.price(AAPL,1526484458,:v,:p,:e)
-> (187.180000 , 188.071139 , 0.476087) := 1.00 (0.052) 1
-> (187.180000 , 188.071807 , 0.476444) := 1.00 (0.052) 2
-> (187.180000 , 188.071236 , 0.476139) := 1.00 (0.067) 3
-> (187.180000 , 188.071905 , 0.476496) := 1.00 (0.067) 4
-> (187.180000 , 188.071406 , 0.476229) := 1.00 (0.073) 5
-> (187.180000 , 188.072076 , 0.476587) := 1.00 (0.073) 6
-> (187.180000 , 188.071382 , 0.476216) := 1.00 (0.079) 7
-> (187.180000 , 188.072052 , 0.476574) := 1.00 (0.079) 8

18

